This is an author-generated version.

The final publication is available at http://dl.acm.org/citation.cfm?id=2593816
Bibliographic information:

Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Maenpaa, Jurgen
Munch. Building Blocks for Continuous Experimentation. In Proceedings of

the 1st International Workshop on Rapid Continuous Software Engineering
(RCoSE 2014), Hyderabad, India, pp. 26-35, June 3, 2014.

Building Blocks for Continuous Experimentation

Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Maenpaa, Jirgen Minch
Department of Computer Science, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland
fabian.fagerholm@helsinki.fi, azsanche@cs.helsinki.fi,

hanna.maenpaa@cs.helsinki.fi, juergen.muench@cs.helsinki.fi

ABSTRACT

Development of software-intensive products and services increas-
ingly occurs by continuously deploying product or service incre-
ments, such as new features and enhancements, to customers. Prod-
uct and service developers need to continuously find out what cus-
tomers want by direct customer feedback and observation of usage
behaviour, rather than indirectly through up-front business analyses.
This paper examines the preconditions for setting up an experimen-
tation system for continuous customer experiments. It describes the
building blocks required for such a system. An initial model for con-
tinuous experimentation is analytically derived from prior work. The
model is then matched against empirical case study findings from
a startup company and adjusted. Building blocks for a continuous
experimentation system and infrastructure are presented. A suit-
able experimentation system requires at least the ability to release
minimum viable products or features with suitable instrumentation,
design and manage experiment plans, link experiment results with a
product roadmap, and manage a flexible business strategy. The main
challenges are proper and rapid design of experiments, advanced
instrumentation of software to collect, analyse, and store relevant
data, and the integration of experiment results in both the product
development cycle and the software development process.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—Elic-
itation methods (e.g. rapid prototyping, interviews, JAD); D.2.2
[Software Engineering]: Design Tools and Techniques—Evolu-
tionary prototyping; D.2.9 [Software Engineering]: Management

General Terms

Economics, Experimentation, Management, Measurement, Theory

Keywords

Continuous Experimentation, Product Development, Architecture,
Agile Software Development, Lean Software Development, Lean
Startup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RCoSE ’ 14, June 3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2856-2/14/06 ...$15.00.

1. INTRODUCTION

The accelerating digitalisation in most industry sectors means that
an increasing number of companies are or will soon be providers
of software-intensive products and services. Simultaneously, new
companies already enter the marketplace as software companies.
Software enables increased flexibility in the types of services that
can be delivered, even after an initial product has been shipped to
customers. Many constraints that previously existed, particularly in
terms of the behaviour of a product or service, can now be removed.

With this new-found flexibility, the challenge for companies is
no longer primarily how to identify and solve technical problems,
but rather how to solve problems which are relevant for customers
and thereby deliver value. Finding solutions to this problem has
often been haphazard and based on guesswork, but many successful
companies have approached this issue in a systematic way. Recently,
a family of generic approaches have been proposed. For example,
the Lean Startup methodology proposes a three-step cycle: build,
measure, learn.

However, a detailed framework for conducting systematic, experi-
ment-based software development has not been elaborated. Such
a framework has implications for the technical product infrastruc-
ture, the software development process, the requirements regarding
skills that software developers need to design, execute, analyse, and
interpret experiments, and the organisational capabilities needed
to operate and manage a company based on experimentation in
research and development. Kohavi et al. [10] note that running
experiments at large scale requires addressing multiple challenges
in three areas: cultural/organisational, engineering, and trustworthi-
ness. The larger organisation needs to learn the reasons for running
controlled experiments and the trade-offs between controlled ex-
periments and other methods of evaluating ideas. Even negative
experiments should be run, which degrade user experience in the
short term, because of their learning value and long-term benefits.
When the technical infrastructure supports hundreds of concurrent
experiments, each with millions of users, classical testing and de-
bugging techniques no longer apply because there are millions of
live variants of the system in production. Instead of heavy up-front
testing, Kohavi et al. report having used alerts and post-deployment
fixing. The system has also identified many negative features that
were avoided despite having support from key stakeholders, saving
large amounts of money.

Continuous experimentation with software product and service
value should itself be based on empirical research. In this paper,
we present the most important building blocks of a framework for
continuous experimentation. Specifically, our research question is:

RQ How can Continuous Experimentation with software-intensive
products and services be organised in a systematic way?

We give an answer to the research question by validating an ana-
lytically derived model against a case study of a startup company
that produces a novel video calling service with both hardware and
software components.

The rest of this paper is organised as follows. In Section 2, we
review related work on integrating experimentation into the soft-
ware development process. In Section 3, we describe the research
approach and context of the study. In Section 4, we first present our
proposed model for continuous experimentation, and then relate the
findings of our case study to it in order to illustrate its possible ap-
plication and show the empirical observations that it was grounded
in. In Section 5, we discuss the model and consider some possible
variations. Finally, we conclude the paper and present an outlook
on future work in Section 6.

2. RELATED WORK

Agile software development was introduced more than two decades
ago [6]. Its proponents sought better ways to organize software
development so that it would be able to meet the dynamic and un-
predictable conditions that characterize the business environment
for software intensive organizations. Many different Agile meth-
ods have been devised. Dynamic Systems Development Method
(DSDM) [22] has been recognized by Larman and Basili as the
first Agile method [11]. Extreme Programming (XP) [3] aimed to
improve software quality and responsiveness to changing customer
requirements. Scrum [20] was devised to manage software projects
and product development. Despite their goals and benefits, Agile
methods do not provide an integral framework that incorporates all
the concerns and stakeholders of an organization towards developing
software that can provide value to customers.

Lean manufacturing and the Toyota Production System [16] has
inspired the definition of Lean software development. This approach
provides comprehensive guidance for the combination of design,
development, and validation built as a single feedback loop focused
on discovery and delivery of value [18]. The main ideas of this ap-
proach, which have been emphasised since its introduction, are sum-
marised in seven principles: optimize the whole, eliminate waste,
build quality in, learn constantly, deliver fast, engage everyone, and
keep getting better [17].

Lean Startup [19] provides mechanisms to ensure that what cus-
tomers wants gets effectively addressed by the development. The
methodology is based on the Build-Measure-Learn loop that es-
tablishes the learning about customers and their needs as the unit
of progress. It proposes to apply scientific method and thinking
to startup businesses in the form of learning experiments. As the
results of the experiments are analysed, the company has to decide
to “persevere” on the same path or “pivot” in a different direction
while considering what has been learned from customers.

In light of the benefits that a methodology such as Lean Startup
can provide, where controlled experiments constitute the main ac-
tivity driving development, Holmstrém Olsson et al. [9] propose a
target stage for any company that wishes to build a development
system with the ability to continuously learn from real-time cus-
tomer usage of software. They describe the stages that a company
has to traverse in order to achieve that target as the “stairway to
heaven”. This target stage is achieved when the software organi-
zation functions as an R&D experiment system. The stages on the
way to achieving the target are: 1. traditional development, 2. agile
R&D organization, 3. continuous integration, and 4. continuous de-
ployment. The authors first describe these first four stages and then
analyse them through a multiple-case study that examine the barriers
that exist on each step on the path towards continuous deployment.
The target stage is only described, and the barriers to reach it are not

addressed. A main finding from the case study is that the transition
towards Agile development requires shifting to small development
teams and focusing on features rather than on components. Also,
it is relevant to notice that the transition towards continuous inte-
gration requires an automated build and test system, a main branch
to which code is continuously delivered, and modularized devel-
opment. The authors found that in order to move from continuous
integration to continuous deployment, organizational units such as
product management must be fully involved, and close work with
a very active lead customer is needed when exploring the product
concept further. The authors suggest two key actions to make the
transition from continuous deployment to R&D as an “experiment
system”. First, the product must be instrumented so that field data
can be collected in actual use. Second organisational capabilities
must be developed in order to effectively use the collected data for
testing new ideas with customers.

Other works have studied some of the stages of the “stairway to
heaven” individually. Stahl & Bosch [21] have studied the contin-
uous integration stage, pointing out that there is no homogeneous
practice of continuous integration in the industry. They propose a
descriptive model that allows studying and evaluating the different
ways in which continuous integration can be viewed.

The final stage of the “stairway to heaven” is detailed and anal-
ysed by Bosch [4]. The differences between traditional development
and the continuous approach are analysed, showing that in the con-
text of the new, continuous software development model, R&D
is best described as an “innovation experiment system” approach
where the development organization constantly develops new hy-
potheses and tests them with certain group of customers. This
approach focuses on three phases: pre-deployment, non-commercial
deployment, and commercial deployment. The authors present a
first systematization of this so-called “innovation experiment sys-
tem” adapted for software development for embedded systems. It
is argued that just as in the case of cloud computing and Software-
as-a-Service (SaaS) the “innovation experiment system” should be
the aim, development for embedded systems should be guided by
similar processes. That is, requirements should evolve in real-time
based on data collected from systems in actual use with customers.

In this paper, we build upon the ideas that define the last stage of
the “stairway to heaven”, and propose a model for continuous exper-
imentation. In this model, experiments are derived from business
strategies and aim to assess assumptions derived from those strate-
gies, potentially invalidating or supporting the strategy. Previous
works have explored the application of a framework for linking the
business goals and strategies to the software development level (e.g.,
[2], [14]). However, those works have not considered the particular
traits of an experiment system such as the one presented in this paper.
The model presented also describes the platform infrastructure that
is necessary to establish the whole experiment system. The Software
Factory [7] can serve as infrastructure for the model proposed, as
it is a software development laboratory well suited for continuous
experimentation. A previous work on creating minimum viable
products [13] in the context of collaboration between industry and
academia presented the Software Factory laboratory in relation to
the Lean Startup approach and continuous experimentation. Some
of the foundational ideas behind Software Factory with respect to
continuous experimentation have been studied in the past, analysing,
for instance, the establishment of laboratories specifically targeted
for continuous development [15] and the impact of continuous inte-
gration in teaching software engineering.

Previous works have presented case studies that exhibit different
aspects concerning continuous experimentation. Steiber [23] report
on a study of the model of continuous experimentation followed

by Google, analysing a success story of this approach. Adams [1]
present a case study on the implementation of Adobe’s Pipeline, a
process that is based on the continuous experimentation approach.

The building blocks presented in this paper, although generaliz-
able with certain limitations, are derived from a startup environment
where the continuous experimentation approach is not only well
suited but possibly the only viable option for companies to grow. Our
work can be seen as a low level model of the “Early Stage Startup
Software Development Model” (ESSSDM) of Bosch et al. [S] which
extends existing Lean Startup approaches offering more operational
process support and better decision-making support for startup com-
panies. Specifically, ESSSDM provides guidance on when to move
product ideas forward, when to abandon a product idea, and what
techniques to use and when, while validating product ideas. Some of
the many challenges faced on trying to establish an startup following
the Lean Startup methodology are presented in [12] with insights
that we have considered for the present work.

One important conceptual concern is the relationship between
exploration and discovery, and actually conducting experiments.
Data mining and information retrieval techniques may be used to
find interesting patterns in existing databases. Such databases com-
monly exist in medium and large-size companies and they can be a
valuable source of information on customer behaviour. However, we
specifically consider experiments to test hypotheses in this article.
In many situations, the relevant data to answer specific questions
may not be available. In other situations, the multitude of interesting
patterns that can be found by analysing vast amounts of data make it
difficult to make informed decisions on specific questions of interest.
The model we present links experimentation on the product and
technical level to the product vision and strategy on the business
level. This allows focused testing of business hypotheses and as-
sumptions, which can be turned into faster decision-making and
reaction to customer needs.

3. RESEARCH APPROACH

Our general research framework can be characterised as design
science research [8], in which the purpose is to derive a technologi-
cal rule which can be used in practice to achieve a desired outcome
in a certain field of application [24]. The continuous experimenta-
tion model presented in this paper was first constructed based on the
related work presented in the previous section as well the authors’
experience. While a framework can be derived by purely analytic
means, its validation requires a grounding it in empirical observa-
tions. For this reason, we conducted a case study in the Software
Factory laboratory at the Department of Computer Science, Univer-
sity of Helsinki, in which we matched the initial model to empirical
observations and made subsequent adjustments to produce the final
model. The model can still be considered tentative, pending further
validation in other contexts. In this section, we describe the case
study context and the research process.

3.1 Context

The Software Factory is an educational platform for research
and industry collaboration. In Software Factory projects, teams of
Master’s-level students use contemporary tools and processes to
deliver working software prototypes in close collaboration with in-
dustry partners. The goal of Software Factory activities is to provide
students a means for applying their advanced software develop-
ment skills in a working life relevant environment and to deliver
meaningful results for their customers [7].

Tellybean Ltd.! is a small Finnish startup that develops a video
calling solution for the home television set. During September
2012-December 2013 the company was a customer in three Soft-
ware Factory projects with the aim of creating an infrastructure to
support measurement and management of the architecture of their
video calling service. Tellybean Ltd. aims at delivering a life-like
video calling experience as their single-product strategy. Their value
proposition: “the new home phone as a plug and play -experience” is
targeted at late adopter consumer customers who are separated from
their families, e.g. due to migration into urban areas, global social
connections, or overseas work. The company pays special emphasis
on discovering and satisfying needs of the elderly, making ease of
use the most important non-functional requirement of their product.
The primary means for service differentiation in the marketplace
are affordability, accessibility and ease of use. For the premiere
commercial launch, and to establish the primary delivery channel
of their product, the company aims at partnering with telecom op-
erators. The company had made an initial in-house architecture
and partial implementation during a pre-development phase. A first
project was conducted to extend the platform functionality of this
implementation. A second project was conducted to validate con-
cerns related to the satisfaction of operator requirements. After this
project, a technical pivot was conducted, with major portions of the
implementation being changed. A third project was then conducted
to extend the new implementation with new features related to the
ability to manage software on already delivered products, enabling
continuous delivery. The launch strategy can be described as an
MVP launch with post-development adaptation.

3.1.1 Product

The Tellybean video calling service has the basic functionalities
of a home phone: it allows making and receiving video calls and
maintaining a contact list. The product is based on an Android OS
based set-top-box (STB) that can be plugged into a modern home
TV. The company maintains a backend system for mediating calls
to their correct respondents. While the server is responsible for
routing the calls, the actual video call is performed as a peer to
peer connection between STBs residing in the homes of Tellybean’s
customers.

The company played the role of a product owner in three Software
Factory projects during September 2012- December 2013. The aim
of the first two projects was to create new infrastructure for mea-
suring and analysing usage of their product in its real environment.
Their third project at Software Factory delivered an automated sys-
tem for managing and updating the STB software remotely. Table 1
summarises the goals and motivations of the projects in detail. Each
project had a 3-7 -person student team, a company representative
accessible at all times, and had a person-hour size of between 600
and 700 hours.

3.1.2 Project 1

The aim of Tellybean’s first project at the Software Factory was to
build means for measuring performance of their video calling prod-
uct in its real environment. The goal was to develop a browser-based
business analytics system. The team was also assigned to produce a
back-end system for storing and managing data related to video calls,
in order to satisfy operator monitoring requirements. The Software
Factory project was carried out in seven weeks by a team of four
Master’s-level computer science students. Competencies required
in the project were database design, application programming and
user interface design.

Thttp://www.tellybean.com/

http://www.tellybean.com/

Table 1: Scope of each of the three Tellybean projects at Software Factory.

High-level goal

Motivation

Project 1 As an operator, I want to be able to see metrics for calls ...so that I can extract and analyse business critical
made by the video call product’s customers. information.
...so that I can identify needs for maintenance of the
product’s technical architecture .
Project 2 As a Tellybean developer, I want to be sure that our prod- ...so that I know the limitations of the system.
uct’s system architecture is scalable and robust. ...so that I can predict needs for scalability of the plat-
As a Tellybean developer, I want to know technical weak- form.
nesses of the system. ...so that I can consider future development options.
As a Tellybean developer, I want to receive suggestions
for alternative technical architecture options.
Project 3 As a technical manager, I want to be able to push an ...so that I can deploy upgrades to the software on one

update to the Tellybean set-top-boxes with a single press

or multiple set-top-boxes.

of a button.

The backend system for capturing and processing data was built
on the Java Enterprise Edition platform, utilizing the Spring Open
Source framework. The browser-based reporting system was built
using JavaScript frameworks D3 and NVD3 to produce vivid and
interactive reporting. A cache system of historical call data was
implemented to ensure the performance of the system.

After the project had been completed, both students and the cus-
tomer deemed that the product had been delivered according to the
customer’s requirements. Despite the fact that some of the founda-
tional requirements changed during the project due to discoveries
of new technological solutions, the customer indicated satisfaction
with the end-product. During the project, communication between
the customer and the team was frequent and flexible.

3.1.3 Project 2

The second project executed at Software Factory aimed at per-
forming a system-wide stress test for the company’s video calling
service infrastructure. The Software Factory team of four Master’s-
level students produced a test tool for simulating very high call
volumes. The tool was used to run several tests against Tellybean’s
existing call mediator server.

The test software suite included a tool for simulating video call
traffic. The tool was implemented using the Python programming
language. A browser-based visual reporting interface was also im-
plemented to help analysis of test results. The reporting component
was created using existing Javascript frameworks such as High-
charts.js and Underscore.js. Test data was stored in a MongoDB
database to be utilized in analysis.

The team found significant performance bottlenecks in Telly-
bean’s existing proof-of-concept system and analysed their origins.
Solutions for increasing operational capacity of the current live
system were proposed and some of them were also implemented.
Towards the end of the project, the customer suggested that a new
proof-of-concept call mediating server should be proposed by the
Software Factory team. The team delivered several suggestions for
a new service architecture and composed a new call mediator server.

3.1.4 Project 3

For their third project at Software Factory, Tellybean aimed to
create a centralized infrastructure for updating their video calling
product’s software components. The new remote software manage-
ment system would allow the company to quickly deploy software
updates to already delivered STBs. The functionality was business
critical to the company and its channel partners: it allowed updating

the software without having to travel on-location to each customer
to update their STBs. The new instrument enabled the company to
establish full control of their own software and hardware assets.

The project consisted of a team of five Master’s-level computer
science students. The team delivered a working prototype for rapid
deployment of software updates.

3.2 Research Process

The case study analysis was performed in order to ground the
continuous experimentation model in empirical observations, not
to understand or describe the projects themselves. Therefore, we
collected information that would help us understand the prereq-
uisites for performing continuous experimentation, the associated
constraints and challenges, and the logic of integrating experiment
results into the business strategy and the development process.

During the projects, we observed the challenges the company
faced related to achieving the continuous experimentation system.
At the end of each project, an in-depth debriefing session was con-
ducted to gain retrospective insights into the choices made during
the project, and the reasoning behind them. In addition to these
sources, we interviewed three company representatives to under-
stand their perception of the projects and to gain data which could
be matched against our model.

The debriefing sessions were conducted in a workshop-like man-
ner, with one researcher leading the sessions and the project team,
customer representatives, and any other project observer present.
The sessions began with a short introduction by the leader, after
which the attendees were asked to list events they considered impor-
tant for the project. Attendees wrote down each event on a separate
sticky note and placed them on a time-line which represented the
duration of the project. As event-notes were created, clarifying
discussion about their meaning and location on the time-line took
place. When attendees could not think of any more events, they
were asked to systematically recount the progress of the project
using the time-line with events as a guide.

The interviews with customer representatives were conducted
either in person on the customer’s premises or online via video con-
ferencing. The interviews were semi-structured, having a mixture of
predefined and free-form structure. A minimum of two researchers
were present in the interviews to ensure that relevant information
was correctly extracted. All participating researchers took notes
during the interviews, and notes were compared after the interviews
to ensure consistency. In the interviews, company representatives
were first asked to recount their perception of their company, its

Learning Cycle Build-Measure-Learn

Build-Measure-Learn

Build-Measure-Learn N

Technical
Infrastructure

720/

time

Figure 1: Continuous Experimentation System.

goals, and its mode of operation before the three projects. Then,
they were asked to consider what each project had accomplished in
terms of software outcomes, learned information, and implications
for the goals and mode of operation of the company. Finally, they
were asked to reflect on how the company operated at the time of the
interview and how they viewed the development process, especially
in terms of incorporating market feedback into decision-making.

During analysis, the project data was examined for information
relevant to the research question. We evaluated and adjusted our ini-
tial model based on the understanding gained from the observations,
retrospective sessions, and interviews.

4. RESULTS

In this section, we first describe our proposed model for contin-
uous experimentation, and then report on the insights gained from
the case study and how they inform the different parts of the model.

4.1 Model for Continuous Experimentation

By continuous experimentation, we refer to a software devel-
opment approach that is based on field experiments with relevant
stakeholders, typically customers or users, but potentially also with
other stakeholders such as investors, third-party developers, or soft-
ware ecosystem partners. The model consists of repeated Build-
Measure-Learn blocks, supported by an infrastructure, as shown in
Figure 1. Conceptually, the model can also be thought to apply not
only to software development, but also to design and development
of software-intensive products and services. In some cases, experi-
mentation using this model may require little or no development of
software.

The Build-Measure-Learn blocks structure the activity of con-
ducting experiments, and connect product vision, business strategy,
and technological product development through experimentation.
Figure 2 illustrates the Build-Measure-Learn blocks. The general
vision of the product or service is assumed to exist. Following the
Lean Startup methodology [19], this vision is fairly stable and is
based on knowledge and beliefs held by the entrepreneur. The vision
is connected to the business strategy, which is a description of how
to execute the vision. The business strategy is more flexible, and
it consists of multiple assumptions regarding the actions required
to bring a product or service to market that fulfils the vision and
is profitable. However, each assumption has inherent uncertainties.
In order to reduce the uncertainty, we propose to conduct experi-
ments. An experiment operationalises the assumption and states a
hypothesis that can be subjected to experimental testing in order to
gain knowledge regarding the assumption. Once the hypothesis is
formulated, two parallel activities can occur. The hypothesis is used
to implement and deploy a Minimum Viable Product (MVP) or Min-
imum Viable Feature (MVF), which is used in the experiment and
has the necessary instrumentation. Simultaneously, an experiment
is designed to test the hypothesis. The experiment is then executed
and data from the MVP/MVF are collected in accordance with the

experimental design. The resulting data are analysed, concluding
the experimental activities.

Once the experiment has been conducted and analysis performed,
the analysis results are used on the strategy level to support decision-
making. Again following Lean Startup terminology, the decision
can be to either “pivot” or “persevere” [19]. If the experiment
has given support to the hypothesis, and thus the assumption on the
strategy level, a full product or feature is developed or optimised, and
deployed. The strategic decision in this case is to persevere with the
chosen strategy. If, on the other hand, the hypothesis was falsified,
invalidating the assumption on the strategy level, the decision is to
pivot and alter the strategy by considering the implications of the
assumption being false. Alternatively, the tested assumption could
be changed, depending on what the experiment was designed to test.

To support conducting such experiments, an infrastructure for
continuous experimentation is needed. Figure 3 sketches the roles
and associated tasks, the technical infrastructure, and the informa-
tion artefacts of such an infrastructure. The roles indicated here will
be instantiated in different ways depending on the type of company
in question. In a small company, such as a startup, a small number
of persons will handle the different roles and one person may have
more than one role. In a large company, the roles are handled by
multiple teams. Five roles are defined to handle three classes of
tasks. A business analyst and a product owner, or a product man-
agement team, together handle the creation and iterative updating
of the strategic roadmap. In order to do so, they consult existing
experimental plans and results which reside in a back-end system.
As plans and results accumulate and are stored, they may be reused
in further development of the roadmap. The business analyst and
product owner work with a data analyst role, which is usually a team
with diverse skills, to communicate the assumptions of the roadmap
and map the areas of uncertainty which need to be tested.

The data analyst designs, executes, and analyses experiments. A
variety of tools are used for this purpose, which access raw data in
the back-end system. Conceptually, raw data and experiment plans
are retrieved, analysis performed, and results produced. The results
are stored back into the back-end system.

The data analyst also communicates with a developer and qual-
ity assurance role. These roles handle the development of MVPs,
MVFs, and the final product. They first work with the data ana-
lyst to produce proper instrumentation into the front-end system,
which is the part of the software which is delivered or visible to
the user. In the case of a persevere-decision, they work to fully
develop or optimise the feature and deploy it into production. Cross-
cutting concerns such as User Experience may require additional
roles working with several of the roles mentioned here.

The back-end system consists of an experiment database which,
conceptually, stores raw data collected from the software instrumen-
tation, experiment plans, which include programmatic features of
sample selection and other logic needed to conduct the experiment,
and experiment results. The back-end system and the database are

Vision

Strategy

Experiment

Product

Build

Measure

Learn

Vision

Business Strategy

v pivot or change
assumptions
Assumption
—
support
persevere
Hypothesis
Design > | Execute >| Analyse
—
implement update implement /
and deploy optimise
MVP / MVF and deploy
full feature
Product / Service

Instrumentation

Figure 2: Build-Measure-Learn Block.

Business Product Data Software Quality
Analyst Owner Analyst Developer Assurance
Create & Iterate Design, Execute, Develop
Roadmap Analyse Experiments Product

Technical _¢

Infrastructure API

|

Experiment DB

EEEBack-end
1t system
Information T A
Artefacts CoTTTTTTTTr
Raw Data

Analytics Tools Instrumentation

A A
AN Front-end
system

Experiment Plans Experiment Results

Figure 3: Continuous Experimentation Infrastructure.

accessible through an API. Here, these parts should be understood
as conceptual; an actual system likely consists of multiple APIs,
databases, servers, etc.

4.2 Lessons Learned from the Projects

Startup companies operate in volatile markets and under high
uncertainty. They may have to do several quick changes as they get
feedback from the market. The challenge is to reach product-market
fit before running out of money.

“You have to be flexible because of money, time and
technology constraints. The biggest question for us has
been how to best use resources we have to achieve our
vision. In a startup, you are time-constrained because
you have a very limited amount of money. So you need
to use that time and money very carefully.” (Tellybean
founder)

When making changes in the direction of the company, it is nec-
essary to base decisions on sound evidence rather than guesswork.
However, we found that it is typically not the product or service
vision that needs to change. The change should rather concern the
strategy by which the vision is implemented, including the features
that should be implemented, their design, and the technological
platform on which the implementation is based. Although Tellybean
has had to adapt several times, the main vision of the company has
not changed.

“The vision has stayed the same: lifelike video calling
on your TV. It is very simple; everyone in the com-
pany knows it. The TV part doesn’t change, but the
business environment is changing. The technology —
the hardware and software — is changing all the time."
(Tellybean founder)

“We had to pivot when it comes to technology and pri-
oritising features. But the main offering is still the
same: it’s the new home phone and it connects to your
TV. That hasn’t changed. I see the pivots more like
springboards to the next level. For example, we made
a tablet version to [gain a distributor partner].” (Telly-
bean CTO)

In the first project, the new business analytics instrument allowed
Tellybean to yield insights on their system’s statistics, providing the
company a means for feedback. They could gain a near-real-time
view on call related activities, yielding business critical information
for deeper analysis. The presence of the call data could be used as
input for informed decisions. It also allowed learning about service
quality and identifying customer call behaviour patterns. Based
on the customer’s comments, such information would be crucial
for decision-making regarding the scaling of the platform. Excess
capacity could thus be avoided and the system would be more
profitable to operate while still maintaining a good service level
for end users. The primary reason for wanting to demonstrate such
capabilities was the need to satisfy operator needs. To convince
operators to become channel partners, the ability to respond to
fluctuations in call volumes was identified as critical. Potential
investors would be more inclined to invest in a company that could
convince channel operators of the technical viability of the service.

“There were benefits in terms of learning. We were
able to show things to investors and other stakeholders.
We could show them examples of metric data even if it
was just screenshots.” (Tellybean CTO)

The high-level goal of the first project could be considered as defin-
ing a business hypothesis to test the business model from the view-
point of the operators. The project delivered the needed metrics

as well as a tool-supported infrastructure to gather the necessary
data. These results could be used to set up an experiment to test the
business hypotheses.

In the second project, Tellybean was able to learn the limitations
of the current proof-of-concept system and its architecture. An al-
ternative call mediator server and an alternative architecture for the
system were very important important for the future development
of the service. The lessons learned in the second project, com-
bined with the results of the first, prompted them to pivot heavily
regarding the technology, architectural solutions, and development
methodology.

“The Software Factory project [...] put us on the path
of ‘Lego software development’, building software out
of off-the-shelf, pluggable components. It got us think-
ing about what else we should be doing differently.
[...] We were thinking about making our own hard-
ware. We had a lot of risk and high expenses. Now
we have moved to existing available hardware. Instead
of a client application approach, we are using a web-
based platform. This expands the possible reach of our
offering. We are also looking at other platforms. For
example, Samsung just released a new SDK for Smart
TVs.” (Tellybean founder)

“Choosing the right Android-based technology platform
has really sped things up a lot. We initially tried to do
the whole technology stack from hardware to applica-
tion. The trick is to find your segment in the technology
stack, work there, and source the rest from outside. We
have explored several Android-based options, some of
which were way too expensive. Now we have started to
find ways of doing things that give us the least amount
of problems. But one really important thing is that a
year ago, there were no Android devices like this. Now
there are devices that can do everything we need. So
the situation has changed a lot.” (Tellybean CTO)

The high-level goals of the second project could be considered as
defining and testing a solution hypotheses that addresses the fea-
sibility of the proposed hardware-software solution. The project
delivered an evaluation of the technical solution as well as improve-
ment proposals. These results were used by the company to modify
their strategy.

In the third project, the capability for continuous deployment
was developed. The STBs could be updated remotely, allowing
new features to be pushed to customers at very low cost and with
little effort. The implications of this capability are that the company
is able to react to changes in their technological solution space by
updating operating system and application software, and to emerging
customer needs by deploying new features. The high-level goals
of the third project could be considered as developing a capability
that allows for automating the continuous deployment process. The
prerequisite for this is a steady and controlled pace of development
where the focus is on managing the amount of work items that are
open concurrently in order to limit complexity. At Tellybean, this is
known as the concept of one-piece flow.

“The one-piece flow means productisation. In develop-
ment, it means you finish one thing before moving on to
the next. It’s a bit of a luxury in development, but since
we have a small team, it’s possible. On the business
side, the most important thing has been to use visual
aids for business development and for prioritising. In
the future we might try to manage multiple-piece flows.”
(Tellybean founder)

S. DISCUSSION

The continuous experimentation model developed in the previous
section can be seen as a general description. Many variations are
possible. For instance, experiments may be deployed to selected
customers in a special test environment, and several experiments
may be run in parallel. A special test environment may be needed
particularly in business-to-business markets, where the implications
of feature changes are broad and there may be reluctance towards
having new features at all. The length of the test cycle may thus have
to be longer in business-to-business markets. Direct deployment
could be more suitable for consumer markets, but we note that the
attitude towards continuous experimentation is likely to change as
both business and consumer customers become accustomed to it.

Having several experiments run in parallel presents a particular
challenge. The difficulty of interpreting online experiments has
been convincingly demonstrated by Kohavi et al. [10]. Statistical
interactions between experiments should be considered in order to
assess the trustworthiness of the experiments. For this reason, it is
important to coordinate the design and execution of experiments so
that correct inferences are drawn.

Other challenges include the difficulty of prioritising where to
start: which assumption should be tested first. We see a need for
further research into this area. Also, in hardware-software co-design,
setting up the experimental cycle quickly is a major challenge due
to both the longer release cycle of hardware and the potential syn-
chronisation problems between hardware and software development
schedules. Based on the case presented in this paper, it may be
beneficial to test a few strategic technical assumptions first, such as
the viability of a certain hardware-software platform. As our case
demonstrates, choosing the correct platform early can have a signifi-
cant impact on the ability to proceed to actual service development.

A further set of challenges have to do with the model of sales
and supplier networks. Essentially all companies are dependent on
a network of suppliers and sales channels. It may be necessary to
extend the model presented here to take into account the capabilities
particularly of hardware suppliers to supply the needed components
in a timely fashion and with the needed flexibility to programmati-
cally vary behavioural parameters in these components. Also, when
the company is not selling its products directly to end users, several
levels of intermediaries may interfere with the possibilities to collect
data directly from field use. If a sales partner cannot grant access
to end users, other means of reaching the audience are needed. We
envision using early-access and beta-test programs for this purpose,
a practice that is commonly used in the computer gaming indus-
try. Other models are possible, and there is an opening for further
research in this area.

In some cases, an experimental approach may not be suitable at
all. For example, certain kinds of life-critical software or software
that is used in environments where experimentation is prohibitively
expensive, may preclude the use of experiments as a method of
validation. However, it is not clear how to determine the suitability
of an experimental approach in specific situations, and research
on this topic could yield valuable guidelines on when to apply the
model presented here.

Finally, experimentation may be conducted with several kinds
of stakeholders. Apart from customers and end users, experiments
could be directed towards investors, suppliers, sales channels, or
distributors. Companies whose product is itself a development
platform may want to conduct experiments with developers in their
platform ecosystem. These experiments may require other kinds of
experimental artefacts than the MVP/MVE. Research on the types
of experimental artefacts and associated experimental designs could
lead to fruitful results for such application areas.

6. CONCLUSIONS

Companies are increasingly transitioning their traditional research
and product development functions towards continuous experiment
systems [9]. Integrating field experiments with product development
on business and technical levels is an emerging challenge. There
are reports of many companies successfully conducting online ex-
periments, but there is a lack of a systematic framework model for
describing how such experiments should be carried out and used sys-
tematically in product development. Empirical studies on the topic
of continuous experimentation in software product development is
a fruitful ground for further research. Software companies would
benefit from clear guidelines on when and how to apply continuous
experimentation in the design and development of software-intensive
products and services.

In this paper, we match a model for Continuous Experiementa-
tion based on analysis of previous research against a case study in
the Software Factory laboratory at the University of Helsinki. The
model describes the experimental cycle, in which assumptions for
product and business development are derived from the business
strategy, systematically tested, and the results used to inform fur-
ther development of the strategy and product. The infrastructure
for supporting the model takes into account the roles, technical
infrastructure, and information artefacts needed to run large-scale
continuous experiments.

A system for continuous experimentation requires the ability to
release minimum viable products or features with suitable instrumen-
tation, design and manage experiment plans, link experiment results
with a product roadmap, and manage a flexible business strategy.
There are several critical success factors for such a system. The or-
ganisation must be able to properly and rapidly design experiments,
perform advanced instrumentation of software to collect, analyse,
and store relevant data, and integrate experiment results in both the
product development cycle and the software development process.
Feedback loops must exist through which relevant information is
fed back from experiments into several parts of the organisation.
A proper understanding of what to test and why must exist, and
the organisation needs a workforce with the ability to collect and
analyse qualitative and quantitative data. Also, it is crucial that the
organisation has the ability to properly define decision criteria and
act on data-driven decisions.

In future work, we expect the model to be expanded as more use
cases arise in the field. Domain-specific variants of the model may
also be needed. Furthermore, there are many particular questions
with regard to the individual parts of the model. Some specific areas
include 1) how to build a back-end system for continuous experi-
mentation that can scale to the needs of very large deployments, and
can facilitate and even partially automate the creation of experimen-
tal plans; 2) how to properly design experiments in order to reduce
uncertainty in strategic assumptions; and 3) how to ensure that exper-
iments are trustworthy when running potentially thousands of them
in parallel. Particular questions regarding automation include which
parts of the model could be automated or supported through automa-
tion. Another question is how quickly a Build-Measure-Learn block
can be executed, and what the performance impact of the model is
on the software development process.

7. REFERENCES
[1] R.J. Adams, B. Evans, and J. Brandt. Creating Small
Products at a Big Company: Adobe’s Pipeline Innovation
Process. In CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pages 2331-2332. ACM, 2013.
[2] V. Basili, J. Heidrich, M. Lindvall, J. Miinch, M. Regardie,
D. Rombach, C. Seaman, and A. Trendowicz.

GQM* Strategies: A comprehensive methodology for aligning
business strategies with software measurement. In
Proceedings of the DASMA Software Metric Congress
(MetriKon 2007): Magdeburger Schriften zum Empirischen
Software Engineering, pages 253-266, 2007.

K. Beck and C. Andres. Extreme programming explained:

embrace change. Addison-Wesley Professional, 2004.

J. Bosch. Building Products as Innovation Experiment

Systems. In Software Business, pages 27-39. Springer, 2012.

J. Bosch, H. Holmstrom Olsson, J. Bjork, and J. Ljungblad.

The Early Stage Software Startup Development Model: A

Framework for Operationalizing Lean Principles in Software

Startups. In Lean Enterprise Software and Systems, pages

1-15. Springer, 2013.

T. Dyba and T. Dingsgyr. Empirical studies of agile software

development: A systematic review. Information and software

technology, pages 833-859, 2008.

F. Fagerholm, N. Oza, and J. Miinch. A platform for teaching

applied distributed software development: The ongoing

journey of the Helsinki software factory. In 3rd International

Workshop on Collaborative Teaching of Globally Distributed

Software Development (CTGDSD), pages 1-5, 2013.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design

Science in Information Systems Research. MIS Quarterly,

28(1):75-105, 2004.

H. Holmstrom Olsson, H. Alahyari, and J. Bosch. Climbing

the “Stairway to Heaven” — A Mulitiple-Case Study Exploring

Barriers in the Transition from Agile Development towards

Continuous Deployment of Software. 39th EUROMICRO

Conference on Software Engineering and Advanced

Applications, pages 392-399, 2012.

[10] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker,
and Y. Xu. Trustworthy Online Controlled Experiments: Five
Puzzling Outcomes Explained. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 786794, New York, NY,
USA, 2012. ACM.

[11] C.Larman and V. R. Basili. Iterative and incremental
developments. a brief history. IEEE Computer, pages 47-56,
2003.

[12] B. May. Applying Lean Startup: An Experience Report —
Lean & Lean UX by a UX Veteran: Lessons Learned in
Creating & Launching a Complex Consumer App. In Agile
Conference (AGILE) 2012, pages 141-147. IEEE, 2012.

[13] J. Miinch, F. Fagerholm, P. Johnson, J. Pirttilahti, J. Torkkel,
and J. Jarvinen. Creating Minimum Viable Products in
Industry-Academia Collaborations. In Proceedings of the
Lean Enterprise Software and Systems Conference (LESS
2013, Galway, Ireland, December 1-4), pages 137-151.
Springer Berlin Heidelberg, 2013.

[14] J. Miinch, F. Fagerholm, P. Kettunen, M. Pagels, and
J. Partanen. Experiences and Insights from Applying
GQM+Strategies in a Systems Product Development
Organisation. In Proceedings of the 39th EUROMICRO
Conference on Software Engineering and Advanced
Applications (SEAA 2013), 2013.

[15] J. Nieters and A. Pande. Rapid Design Labs: A Tool to
Turbocharge Design-led Innovation. Interactions, pages
7271, 2012.

[16] T. Ono. Toyota production system: beyond large-scale
production. Productivity press, 1988.

3

[

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

—

[17] M. Poppendieck. Lean software development: an agile toolkit.

Addison-Wesley Professional, 2003.
[18] M. Poppendieck and M. A. Cusumano. Lean Software

Development: A Tutorial. IEEE Software, pages 26-32, 2012.

[19] E. Ries. The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation To Create Radically Successful
Businesses. Crown Business, 2011.

[20] K. Schwaber and M. Beedle. Agile software development with
Scrum. Prentice Hall Upper Saddle River, 2002.

[21] D. Stahl and J. Bosch. Modeling Continuous Integration
Practice Differences in Industry Software Development.
Journal of Systems and Software, pages 48-59, 2014.

[22] J. Stapleton. DSDM: Business Focussed Development.
Pearson Education, 2003.

[23] A. Steiber and S. Alidnge. A Corporate System for Continuous
Innovation: The case of Google Inc. European Journal of
Innovation Management, pages 243-264, 2013.

[24] J. E. van Aken. Management Research Based on the Paradigm
of the Design Sciences: The Quest for Field-Tested and
Grounded Technological Rules. Journal of Management
Studies, 41(2):219-246, 2004.

	1 Introduction
	2 Related Work
	3 Research Approach
	3.1 Context
	3.1.1 Product
	3.1.2 Project 1
	3.1.3 Project 2
	3.1.4 Project 3

	3.2 Research Process

	4 Results
	4.1 Model for Continuous Experimentation
	4.2 Lessons Learned from the Projects

	5 Discussion
	6 Conclusions
	7 References

