
 
 

  
Abstract— Due to the fact that organizations developing 

software face ever increasing challenges to the quality, costs, 
and duration of software development, process models are used 
to understand, document, visualize, plan, and improve the 
development process. Usually, these models show the static 
structure of the processes, while the dynamic behavior is 
difficult to predict. Simulation models of software development 
processes can help to determine the process dynamics. While 
most of the simulation models proposed up to now are based on 
the system dynamics approach, we develop a discrete-event 
simulation model focusing on the inspection process that allows 
a more detailed representation of organizational issues, 
products and resources. In contrast to a system dynamics 
approach in a discrete-event simulation model, software 
products (such as code components) and resources (such as 
developers) are explicitly represented with attributes (e.g., size, 
skills).  

In this article we sketch the development of the model, its 
structure, and the results of selected experiments with the 
model. The model aims at supporting decision making for 
introducing and tailoring inspections. The question of which 
artifacts should be inspected and how inspection activities 
should be staffed will be discussed. The model considers 
influences of varying project and context conditions and can 
therefore be used as a basis for the adaptation to different 
development environments. 

 
Index Terms—Decision Support, Discrete-Event Simulation, 

Inspections, Process Optimization. 
 

I. INTRODUCTION 
ECISION support for planning software development 
projects is a crucial success factor. The special 
characteristics (such as context-orientation, uncertainty, 

complexity, creativity, human-based processes) aggravate 
the planning of software development projects in contrast to 
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the planning of many other production processes. The 
selection and tailoring of appropriate software processes, 
methods, and tools for the development of high quality 
software requires knowledge about their effects under 
varying project conditions. Up to now, selection has 
essentially relied on subjective knowledge, empirically 
gained experience from previous projects, or results from 
expensive controlled laboratory experiments. This leads to a 
situation where decisions concerning alternative processes 
and alternative implementations are only insufficiently 
supported.  

In general, simulation can be used and already is being 
used in technical environments for planning a system a priori 
(e.g., before implementing it), for controlling it (e.g., for 
operative or online usage), or for analyzing it (a posteriori 
application). The reasons for creating a simulation model 
can be classified with respect to six categories [15]: strategic 
management, planning, control and operational management, 
process improvement and technology adoption, 
understanding, training and learning. The simulation model 
we have developed is intended to support the planning with 
respect to the following two aspects: On one hand, the 
variables of interest (e.g., total effort) can be predicted for a 
given process. On the other hand, simulation supports the 
decision on selecting alternative processes.  

Before building a simulation model, the scope of the 
model has to be defined in accordance with the expected 
result variables, the process abstraction, and the input 
parameters. In general, the model scope usually fits one of 
the following points of view: portion of the life cycle, 
development project, multiple, concurrent projects, long-
term product evolution or long-term organization. For the 
process abstraction, the model builder has to identify the key 
elements of the process, the relationships between these 
elements, and the behavior of these elements. Obviously, the 
relevant elements are those necessary for fulfilling the 
purpose of the model. Important elements to identify are, for 
instance, the key activities and tasks, objects (code units, 
designs, and reports), resources (staff, hardware), 
dependencies between activities and flow of objects, loops 
(iteration, feedback) and decision points, input parameters 
and result variables. To run a simulation model, the input 
parameters need to be initialized and the model has to be 
calibrated and validated with respect to the target 
organization. Validation can be done through reviews and 
inspections of the model. However, in order to make a 
model fit an organization, the input data has to come from 
the organization. The quality of the simulation results 
depends on the accuracy of the input data. In an industrial 
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setting, the data is often not available because the 
measurement data needed was not captured or different 
measures were collected. Useful strategies for handling these 
situations can be found in [16]. Problems with the 
availability of data and also with the acceptance of 
simulation techniques when those are introduced are well 
known from other areas of application, but experience has 
shown that such difficulties can be overcome [17]. 

This paper discusses a discrete-event simulation model to 
support the planning of code inspections, which was 
developed within a larger research project [30]. Due to the 
context-orientation of software development (i.e., there is no 
unique approach for performing software development), a 
method for the fast and cost-effective creation of simulation 
models is needed. Hence, a corresponding method is 
sketched based on our modeling experience with the 
concrete inspection model. The paper is organized as 
follows: In Section 2, some related work is discussed. In 
Section 3, we sketch the method for building the discrete-
event simulation model. Section 4 describes the model 
prototype and the rationales behind it. Section 5 presents 
results from applying the simulation model to the problem of 
appropriately selecting code items for inspections and 
determining the size of inspection teams. Finally, Section 6 
gives an outlook on future work. 

II. RELATED WORK 
A plethora of approaches has been proposed to support 

decision-making in software development (e.g., decision 
tables, expert systems, experience analysis). One promising 
approach is based upon the combination of process 
simulation and empirical data from real experiments and 
case studies. Rus et al. [18] describe the benefits in the 
following way: “(a) Simulation can use the empirical results 
from different contexts and apply them to a planning 
situation as appropriate. (b) The analysis of simulation 
results can point out situations and factors for which 
conducting empirical studies would be most worthwhile. 
Empirical studies about software inspections are an 
established discipline. A multitude of controlled experiments 
and case studies has been reported in the literature (e.g., 
[19]). Moreover, modeling and simulation are increasingly 
applied to software processes and broaden their 
understanding. Raffo et al. [20] describe the multifaceted 
relationships between empirical studies and the building, 
deployment and usage of process and simulation models. 
Several models for simulating inspections are described. 
They mainly differ with regard to the intended purpose (e.g., 
prediction, control), the dependent variables of interest (e.g., 
cycle time, reliability), the development phases considered 
(e.g., design, all phases), the simulation technique, and the 
degree of combining simulation with other techniques that 
support process understanding (e.g., descriptive process 
modeling, GQM). In the following, some essential 
contributions are sketched. 

Rus et al. [21] present a process simulator for decision 
support that focuses on the impact of engineering practices 
on software reliability. The simulator consists of a system 
dynamics model and a discrete-event simulation model. The 

continuous model is intended to support project planning 
and predict the impact of management and reliability 
engineering decisions. The discrete-event model is better 
suited for supporting project controlling. One main purpose 
of the discrete-event model is to predict, track, and control 
software defects and failure throughout a specified period. 

Madachy [22] sketches a system dynamics simulation 
model of an inspection-based life cycle process that 
demonstrates the effects of performing inspections or not 
performing them, the effectiveness of varied inspection 
policies, and the effects of other managerial decisions such 
as resource allocation. The model does not take into account 
schedule pressure effects and personnel mix. 

Tvedt and Collofello [23] describe a system dynamics 
model aiming at decision support with regard to several 
process improvement alternatives. The dependent variable of 
interest is cycle time. The model is intended for 
understanding cause-effect relationships such as the 
influence of the implementation of inspections on cycle time 
reduction. The modeling approach distinguishes between a 
base model and several modular process improvement 
models (i.e., one for each improvement alternative). 

Pfahl and Lebsanft [25] combine process simulation 
techniques with static modeling methods, namely software 
process modeling and measurement-based quantitative 
modeling. They propose the IMMoS approach that 
integrates system dynamics modeling with descriptive 
process modeling and goal-oriented measurement. The 
descriptive process model is used as a starting point for 
identifying causal relationships. Goal-oriented measurement 
is used for deriving measures from goals that are determined 
by the needs of a system dynamics model. Benefits of this 
combination are synergy effects from using already existing 
and proven methods and overcoming weaknesses of system 
dynamics model building. 

In contrast to these contributions, the simulation model 
described in this paper is the first discrete one, focusing 
more strongly on the organizational and personal influence 
factors on inspections. It is mainly developed for decision 
support purposes. 

Several papers discuss the steps towards building discrete-
event simulation models. As an example, Raffo and Harrison 
[24] describe the creation of a discrete-event simulation 
model with the focus on integrating feedback from the 
software development process.  

In contrast, the method sketched in this paper focuses on 
the integration with descriptive process modeling and goal-
orientation as well as on integrating organizational issues of 
the development process. For modeling organizational 
issues, we need a greater level of detail. Discrete-event 
simulation models are more concrete than system dynamics 
models with regard to the static objects (tasks) and moving 
objects (work products) in the process. Also, it is possible to 
model individual persons and distinguish between work 
products [28]. 

III. BUILDING THE MODEL 
In this Section, we explain the steps of building the discrete-
event simulation model. Since many publications in the area 



 
 

of software processes modeling only describe simulation 
models and results of their application, our focus is now on 
explaining the steps of building a model. These steps are 
based on our practical experience and will be refined in the 
future in order to define a method for the creation of 
discrete-event simulation models in a systematic procedure. 
This method is similar to the one proposed in [1], which 
considers the case of creating system dynamics models. We 
give a short summary of the steps that are explained later in 
more detail.  

In the first step, the goal of the simulation has to be 
defined. Then, as a second step, the static process model, if 
one exists, has to be analyzed, otherwise a process model 
has to be created before. Step one and two can be performed 
in parallel. In the third step, we identify the factors that 
influence the interesting variables according to the goal of 
the simulation. In the fourth step, we determine the 
quantitative relationships required for the discrete-event 
simulation model. Although these steps seem to be 
performed in a sequential order, it is often necessary to go 
back to previous steps, i.e., a simulation model is usually 
developed in an iterative way. 

A. Step 1: Definition of the Simulation Goal 
If a simulation model is detailed enough, it can be used to 

satisfy various different goals. The effort for building such a 
detailed model, if possible at all, is far too high to be 
reasonable. Therefore, we have to reduce the model level of 
detail to address the most important goals of the simulation 
project, which can be identified by the GQM 
(Goal/Question/Metric) [8][9] method. GQM is usually 
applied for defining the measures to be collected during a 
project for purposes such as understanding, controlling, or 
improving. In our context, the defined metrics are not used 
for creating a measurement plan; instead, they can be used to 
identify possible input and output parameters.  

The GQM goal definition consists of five dimensions, 
which describe the goals in a structured way. 

Analyze the object of the study  
for a specific purpose  
with respect to a quality focus  
from a specific viewpoint  
in a specific context.  

Here we addressed the major goals, in order to determine the 
influence of organizational settings on (1) effort, (2) 
duration, and (3) quality by simulation. Because GQM 
goals should not cluster more than one purpose, one quality 
focus, and one viewpoint, the major goal should be divided 
into three GQM goal descriptions (e.g., analyze the 
inspection process for the purpose of decision-making with 
respect to effort from the viewpoint of a project planner in 
the context of company X). 

The derivation of metrics with a GQM plan or the 
creation of GQM abstraction sheets can be used as a means 
for identifying independent variables (i.e., input variables for 
the simulation model) for a specific quality focus. The 
model granularity mainly depends on the viewpoint (i.e., a 
manager might be interested in a more abstract view than a 
developer) and the purpose (i.e., the expected results imply 
adequate model granularity). The object of the study might 

also influence the granularity (e.g., a process description 
cannot be further refined).  

B. Step 2: Development of a Static Process Model 
A static1 process model describes the relationships 

between activities (processes), artifacts (products), roles and 
tools. The relationships between the activities and the 
artifacts are described in a product flow model, which shows 
the products used, produced and modified by an activity. 
The roles and tools are connected to the activities in an 
involved or used relation. A role is involved in an activity or 
a tool is used when performing that particular activity. 
Sometimes a control flow completes the process model. A 
product transition model can help to understand the order of 
transformations if many activities with a lot of 
transformations are within the scope of the model.  

For creating or refining the static process model we use 
the elicitation-based approach as proposed in [4] and the 
process modeling tool SPEARMINT [10]. The graphic 
representation of the static process model can depict the 
flow structure of the model and eases the creation of flow 
logic in Step 4.  

 
Fig. 1 Product flow of an inspection process according to [2]. 

In Fig. 1 the product flow of an inspection process is 
shown. The product flow includes the detailed activities of 
the inspection process and the artifacts that are being used, 
produced, and modified. It does not show explicitly the 
order of the activities performed during the inspection. If the 
order of activities is not obvious in the product flow 
diagram, it is possible to create a control flow diagram to 
show this order. Fig. 1 shows, for example, the inspection 
process, which is the refinement of the verification activity 
in the context of the coding activity. The activity inspect 
component code in Fig. 2 is the activity that contains the 
sub-process inspection. 

 

Fig. 2: The coding process with the component design as input and the 
inspected code as output parameter 

In addition to the graphical representation, the static 

 
1 A model is called static if there is no change in the model when the 

process is performed. A dynamic model changes over time and has a 
different state at every point in time. 



 
 

process model contains attributes that can be used to identify 
the variables of the qualitative model [1]. 

C. Step 3: Development of a Qualitative Model 
The qualitative model describes the relationships between 

the influencing factors and the relevant factors with respect 
to the goals. The determination of the influencing factors can 
be supported by the static process model, the experience of 
the modeler, the knowledge found in literature (e.g., results 
of laboratory studies), interviews with practitioners, and data 
mining. In many cases the factors are equal to those in other 
models and, therefore, the modeler can start with a basic set 
of factors. 

The attributes from the static process model can be used 
to determine the variables for the dynamic model, e.g., 
attributes like lines of code (LOC) or defects, or times like 
the duration of an activity are supposed to be represented in 
the qualitative model. 

A good visualization technique for qualitative models are 
cause-effect diagrams, causal-loop diagrams [3], or 
influence diagrams. They visualize the relations with arrows 
and the direction of the influence with plus or minus signs. A 
plus (minus) sign indicates that an increase in the influencing 
variable causes an increase (decrease) in the dependent 
variable. Cause-effect diagrams are also applied in 
developing system dynamics models, which are often used in 
software process modeling and simulation.  
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Fig. 3: A cause-effect diagram of an inspection process where the effort 
and the number of detected defects are the interesting factors. 

Fig. 3 shows a cause-effect diagram of the two objective 
variables effort and number of detected defects in an 
inspection. Several of these factors are typical attributes of 
the artifacts, the activities, or the roles in the static process 
model that could be measured during the execution of the 
process. If empirical data is available from former projects, 
these data can be used in step four to determine the 
quantitative relationships for the model.  

The measures identified during the goal definition in the 
beginning can aid in identifying variables that are not in the 
static process model, especially the behavior of the people 
performing the process.  

D. Step 4: Development of a Quantitative Model 
In the fourth step, the information collected in the first 

three steps is considered for quantifying the model. The 
GQM goal and plan can be used to derive the variable values 
that are set before or changed during the simulation. Also, 
the variables obtained as simulation results are specified by 

GQM. Usually, the input parameters are variables that are 
measured during a measurement program, as well as 
characteristics of the project, involved personnel, and the 
organization. 

From the static model we know the sequence of steps, the 
decision points, and the activities where effort is consumed. 
The qualitative model depicts the input factors that influence 
the output factors and their dependencies. Note that the type 
of simulation model (discrete-event or system dynamics) 
pre-specifies extent and form of information to be 
quantified. On the other hand, the desired level of 
granularity and other goals related to the simulation 
determine the model type. Below, we focus on building a 
discrete-event simulation model because of its more detailed 
representation of organizational processes and persons and 
items related to them. 

 
The simulation model is built by following the flow and 
control diagram and considering the related cause-effect 
relationships for each activity in the flow or control diagram. 
Both then define an activity block inside the simulation 
model with its related input and output variables. 

Inside an activity block the relationships qualitatively 
described by the cause-effect diagrams have to be quantified 
by mathematical equations or some logical relationships. 
This is done by selecting one variable after another in the 
considered cause-effect diagram as an output variable, which 
then has to be explained by some variables it depends on. 
These input variables are predecessors in the cause-effect 
graph. Possible methods for quantifying the relationships 
between the output variable and the related input variables 
are expert interviews, pragmatic models, stochastic analysis, 
and data mining techniques.  
Here one has to distinguish between the quantification of 
known relationships, i.e., exact linguistic descriptions that 
are available and have to be transformed into mathematical 
functions, and the generation of rules by applying data 
mining techniques to measurement data to describe 
relationships that are not obvious or were not considered up 
to now. The latter one is the case in simulating the software 
inspection process, for example.  
The choice of the data mining techniques for rule generation 
depends, of course, on the data or information available, i.e., 
measurement data, linguistic descriptions, etc. The 
granularity of the model also determines the measurement 
data needed for rule generation, i.e., measurement data or 
information for all chosen variables are required. It is 
obvious that for building a discrete-event simulation model, 
more measurements are needed than for building a system 
dynamics model, since the former one includes many more 
variables. In a discrete-event simulation approach we also 
have to keep in mind that variables might have different 
states for similar objects, i.e., developers have different 
coding or inspection skills.  
The techniques we considered up to now for the 
quantification of the qualitatively known relationships 
described in the cause-effect diagrams are neural networks 
and classification trees.  
The neural networks used are feed forward neural networks 
with one hidden layer and a single output [5][6]. The 



 
 

corresponding network function is the mathematical 
equation describing the input-output relationship for the 
considered node in the cause-effect diagram and can be 
plugged into the simulation model. The network function 
includes input-output weights for each unit in the hidden 
layer, which have to be determined. In general the weights 
are estimated from industrial data. The industrial data is split 
into a training set and a validation set. The training set is 
then used to estimate the weights of the network function, 
and the validation set is used to determine the quality of the 
resulting network function, i.e., the input variables were 
given values from the validation set. The network function is 
then evaluated for the given input values and the analytical 
calculated output is compared with the corresponding 
measurement data.   
The problem, which often occurs especially in the context of 
the software development process, is that measurement data 
is not available for all input variables . In this case one has 
to make further assumptions or skip these variables.    
Relevance measures [11], for example the partial derivatives 
of the network function with respect to the input variable, 
can help to determine the impact of each explaining (input) 
variable with respect to the explained (output) variable. By 
considering the validation results and the corresponding 
relevance measure, one can easily verify whether the 
estimated functional dependencies describe the input/output 
relation in a sufficient manner, whether the impact of a 
skipped variable is too large or whether an explaining 
(input) variable is missing. In the latter case, the missing 
variable should be determined, e.g., through a case-based-
reasoning method [14], and a new rule has to be generated 
for it by considering more possible input variables than 
considered in the qualitative model or applying other data 
mining techniques. If a variable has very small relevance 
across its whole parameter range, it is redundant and does 
not explain the considered output variable. Thus, a relevance 
measure can also be used to validate the qualitative 
description of the dependencies given in the cause-effect 
diagrams.  
The second technique applied for the quantification of the 
relationships we used are classification trees determined by 
the software tool XpertRule Miner [7]. Based on the 
information gain technique, a classification tree for an 
explained variable is calculated on the data set. The tree can 
be read from root to a leaf as a logical if-then rule for the 
input-output relationship. A leaf of the tree contains 
information about the percentage, variance, mean and 
standard deviation for the explained variable when applying 
the corresponding rule. Thus, the root of the tree denotes the 
variable with the greatest impact with respect to the 
explained variable. The splitting criterion used is based on 
the normalized standard deviation [7].  
The relationships developed in this step will be used when 
the model is created and the equations are implemented in 
the model. The input parameters for the equations have to be 
provided with the input parameters for the model.  
Currently, we are analyzing data on historical software 
development processes coming from two large companies. 
Unfortunately, these data (which were not collected for the 
purpose of fitting a simulation model) cover only some 

variables required for the discrete-event simulation model 
presented here. For instance, information on the assignment 
of tasks to persons and individual working times is missing. 
On the other hand, the data differ essentially from company 
to company, e.g., because of different organizational settings 
and measurement techniques.   

Therefore, in the model discussed below we do not use 
complex functional relationships (as derived, for instance, 
from neural networks), but more simple functions as typical 
in the literature, which were adapted using the available 
industrial data and data from the literature. However, for 
application in industrial settings the more complex 
functional relationships should be used, since this allows a 
detailed adaptation to a company with its specific 
environment settings. Nevertheless, building and presenting 
the model is the first step in convincing software developers 
to collect the required data, which will then be used for 
model adaptation and refinement.  

IV. BUILDING A DISCRETE-EVENT SIMULATION MODEL  
In the following, we describe the discrete-event simulation 

model, which is being developed as a prototype decision 
support tool for planning inspection processes. For building 
the model, we used the simulation tool Extend [12], which 
allows to build both discrete-event and continuous 
simulation models.  

A. High-level Architecture of the Model  
The macro structure of the simulation model reflects the 

sequence of tasks or sub-processes (such as design, coding, 
inspection, and unit test) according to the process diagram 
(Fig. 2). Similar to physical items in material flow systems, 
the software items are moved through these sub-processes of 
a typical software development process. Therefore, design 
and code documents (items) are represented by moving units 
(MUs) while static objects represent the tasks. The most 
important object for representing a task is an activity block. 
Such a block stores an item for the duration or working time 
of the corresponding activity and, thus, represents the 
temporal structure of a project. 

Besides the duration, each task affects the quality of the 
processed item. In general, we assume that the quality of an 
item (design document, code document) is measured by its 
number of defects. Thus, during design2 and coding, items 
with a specific size and number of defects are created. 
During inspection and test, some of the defects are found. 
During rework, found defects are removed (and possibly 
some new defects are produced). 

For all activities represented by the model, we assume that 
their results are determined by attributes of the processed 
item, attributes of the person who performs the tasks, and 
organizational factors as qualitatively described in the 
related cause-effect diagram. For considering effects specific 
to the person assigned to the task, developers are represented 
by MUs just like items. In Extend, the linking of items and 
persons prior to a specific task is done by a block creating a 

 
2 In the following, especially in the simulation experiments discussed in 

Subsection D, we only consider the planning of code inspections that are 
assumed to be modeled in a more detailed and reliable way. 



 
 

compound MU, which represents an item together with an 
assigned person. Up to now, one main assumption of the 
model is that the assignment of tasks to persons is done in an 
arbitrary way or, more precisely, persons are selected from a 
staff pool in a "first come, first serve" (fcfs) fashion. This 
means that at the start of a simulation run items are batched 
with persons according to a given order (determined by item 
and person numbers) as long as persons are available. Later 
on, items waiting for their next processing steps are batched 
with the persons becoming available next.  

Unlike the other tasks, inspections are assumed to be done 
in an interrupting way such that persons involved in coding 
or testing may interrupt their tasks and read the documents 
to be inspected in between. Thus, waiting times for building 
an inspection team can be avoided in the model. 

After accomplishing a task, linked items and persons are 
un-batched. Persons are then directed back to the pool from 
where they are assigned and sent to new tasks. Items are 
directed to the subsequent sub-process, e.g., from design to 
coding or from inspection to rework. In some cases, there 
are alternatives for routing an item. For instance, rules may 
be applied for deciding on whether an item is subject to 
inspection or not. Moreover, switches can be used for 
activating or deactivating some parts of the model, e.g., the 
inspections, the design, or the testing and rework activity. In 
general, the connections of processes and sub-processes and 
the routing logic for the MUs should represent 
organizational rules of a considered real-life company.  

Most of the Extend blocks in Fig. 4 are for accessing 
attributes or variables and for calculating and assigning new 
values. For instance, in the coding sub-process, the number 
of produced defects is calculated; in the inspection and test 
processes, the number of found defects is calculated, and in 
the rework processes, the number of defects is updated 
(considering new defects produced during rework).  

The general sequence of blocks representing one sub-
process serves the following purposes: First, the working 
time of the activity has to be calculated. Then, a compound 

item enters the activity block and stays there for that time. 
After that, its number of defects is updated. 

The most important issue of each sub-process is to 
represent the quantitative relationships of the model in a 
valid way. This especially concerns the outputs of an 
activity, i.e., its consumed time and the effects on the 
number of defects. In general, these values are determined 
by attributes of the items, by attributes of the persons, and by 
general or project-specific factors. For some of the relevant 
data it is hardly possible to determine the necessary 
information in real-life projects. For instance, details on the 
specific experiences, skills, and productivities of persons are 
usually not available. Therefore, we are elaborating 
approaches for taking such human attributes into account, 
which are not directly observable, and for considering them 
in the quantitative logic of the model.  

B. Quantitative Relationships of the Model 
Following the guideline sketched in the previous section, 

we now explain some quantitative relationships that 
determine intermediary and output variables. Some of the 
variables used in the quantitative relationships are related to 
a code item i, or a person j, others are general parameters of  
the model.  

1) Parameters and Assumptions 
For an item i, we assume that its size, sizei, (measured, 

e.g., by the number of lines of code) and its difficulty or 
complexity, cplxi, are the most important factors for the 
results of an activity. The complexity cplxi is assumed to be 
an adjusting factor distributed around 1, which serves for 
weighting the size according to the specific difficulty of 
processing the item. 

For a person j, we assume that specific skills determine 
his or her quality of work and his or her productivity (work 
load per time unit) and, thus, the change in the number of 
defects and the time needed for performing a task. The 
specific skill values of the model are the coding quality skill 
(cqsj), the preparation (inspection) quality skill (pqsj), the 

Fig. 4. Excerpt from the Extend visual Interface of the model. Coding with the inspection of selected code items. Items pass the main line 
from left to right. The first block on the left is a batch block for combining code modules and persons; the last on the right separates the
batched modules and people.  



 
 

coding productivity skill (cpsj), preparation productivity skill 
(ppsj), and the testing productivity skill (tpsj). 

For ease of use we assume these skill values to be 
calibrated on a nondimensional [0,1] interval. Moreover, 
working with such skill values instead of personal 
productivities allows an easier application of a learning 
model such as, for instance, [31]. A skill value of about 0.5 
is typical for an average developer, while a value near 1 
characterizes an experienced or high performance developer. 
Multiplied with given values for  maximum quality of work 
or a maximum productivity (corresponding to skill values of 
1), a person’s actual defect (production, detection) rate and 
productivity can be determined. Thus, the following model 
parameters with respect to productivities are used: a 
maximum coding productivity, mcp, a maximum preparation 
productivity, mpp, and a maximum testing productivity, mtp.  

With respect to defects, the following model parameters 
are used: The number of defects in relation to the size of the 
document to be produced is expressed by a minimum defect 
density, mdd. For rework, it is assumed that all found defects 
are removed but some of them not correctly, or that new 
defects are produced in a proportional relationship to the 
correctly removed ones. For expressing the ratio of new 
defects with respect to the removed ones, a rework defects 
factor rdf with rdf < 1 is used. For the unit test, a defect find 
rate, dfr, is applied. Note that all these model parameters are 
specific to various characteristics of a software development 
project, which are not explicitly considered in the model, 
e.g., the programming language and development tools. 

2) Defect generation, detection, and rework 
For the activity coding the number of defects produced 

during coding, pdi, is calculated by: 

jiii cqsmddcplxsizepd ⋅⋅=  (1) 
For the number of found defects during an inspection we 

consider the underlying cause-effect diagram (Fig. 3) to 
show the development of the equation for the defects found 
during an inspection for one item fdii. Thus fdii is the output 
variable and all other nodes connected with this variable 
serve as the explaining (input) variables. 

( )( ) iiiji cplxpdgefitsteffdi ⋅⋅−= exp1  (2) 
Note that not all influencing factor from the cause-effect 

diagram (Fig. 3) appear in this formula, some of them are 
omitted because of a lack of data and measurement 
problems, e.g., familiarity with the product. Other factors, 
e.g., size, are indirectly considered. (The size is used for 
calculating the number of produced defects pdi .) 

tefi is a team effectiveness factor depending on the skills 
of the individual team members and other factors. A value of 
tefi = 3/7, for instance, corresponds to a situation where 7 
inspectors find 95% of the defects. For the inspection team, 
the number of found defects is assumed to be smaller than 
the sum of individually found defects (because of double 
counting). Therefore, the team size itsi is in a degressively 
increasing relationship to the number of found defects.  

 gef is a general effectiveness factor that reflects, for 
instance, the effectiveness of the chosen inspection or 
reading technique.  

The new defects produced during rework are calculated 

by 

ii fdrdfrd ⋅=  (3) 
where fdi is the number of found defects during the 

previous inspection or test. 
Additionally defects are also found during testing. We 

assume that these are in an exponential relationship to the 
testing time tti [32] as follows: 

( )( )ijii tttpsdfrdfdt ⋅⋅−−= exp1 , (4) 

where di are the defects remaining after coding, 
inspection, and rework. Alternatively, the number of to be 
found defects (or a desired defect density) may be pre-
specified. In that case the above formula may be transformed 
for calculating the required testing time. The effects of 
rework after test are calculated in the same way as those of 
rework after inspection. 

3) Effort 
Based on the above assumptions, the relationships for 

determining processing times of activities (performed by 
person j on item i) and their effects on the number of defects 
can be expressed as follows. For the coding time, cti: 

( )jiii cpsmcpcplxsizect ⋅⋅= . (5) 

The individual preparation time, ptij, of an inspector is 
calculated as follows:  

( )jiiij ppsmppcplxsizept ⋅⋅= . (6) 

The size can be the size of the actually inspected code if 
existing code is changed, or the total size for a new 
development. The rework activities are assumed to be 
closely connected to the coding activities. Thus, the same 
skill values are also used for determining the rework time. 
The relationship between rework activities (measured by the 
number of defects to be removed) and coding activities 
(measured by the size of the item to be produced) is 
expressed by an artificial factor, the average defect size, ads. 
The time for rework is then calculated by: 

( )jiii cpsmcpadscplxfdrt ⋅⋅⋅= . (7) 

The overall effort is computed by summing up all effort 
data that are calculated using the time needed for the 
activities of item i. 

4) Duration  
The goal variable duration results for each simulation run 

when the starting and finishing times of all activities, i.e., the 
project schedule, are fixed. 

C.  Other Aspects of Modeling 
Due to the chosen granularity defined in the goal 

definition and other assumptions (see IV.B.1 ), not all details 
of the real-life software development process are modeled. 
For instance, meetings prior to an inspection are not 
represented in the model. Let us note that the sub-processes 
outside our model focus are modeled in a rougher way. 
Similarly, aspects outside the considered project are 
neglected, for instance the involvement of persons in other 
tasks or different projects. It would, in principle, be possible 
to have a pre-specified timetable for each person defining 
their availability for the current project. 

Most human factors except productivity and quality skills 
for coding and inspection are neglected up to now. An 
extension of the model for representing effects of time 



 
 

pressure is under development. The organizational factors 
are expressed in the values for maximum productivities, etc., 
which are assumed to be fixed for the given project. For 
setting these values of the given model, real-life data from 
industrial software development processes has been used. 
This data is not available up to now and we are also looking 
for data from the fields of psychology and manpower 
studies. 

Even after careful refinement of the quantitative 
relationships, there are essential effects in a software 
development process that cannot be fully determined a 
priori, for instance, human effects such as fatigue, boredom, 
and other physical and mental factors. These human effects 
are considered by having stochastic elements in the process, 
which influence, for instance, the working times and 
numbers of defects produced. Therefore, the results of an 
activity with respect to the changed number of defects and 
the time needed for performing it are considered as random. 
For this reason, the above values are multiplied by random 
factors, which are assumed to be stochastically determined 
according to a lognormal distribution with an expected value 
1. Multiple runs of the model can be used for estimating the 
effects of such random influences on the distribution of the 
model outputs, especially with respect to the objectives 
quality, project duration, and costs. Using such information, 
a project manager may get a better feeling for the risks 
within a scheduled project.  

Another key aspect of real-life projects not explicitly 
treated is that of scheduling. The implicit fcfs task 
assignment and scheduling leads to sub-optimal results and 
can be improved as worked out in [29]. 

 

D. Application of the Model 
As input data, the simulation model requires a 

specification of a software development project. Roughly 
said, such a project consists of item-specific data, person-
specific data, and project-specific or general data. For each 
item to be produced (e.g., the source code of a module), the 
item-specific data includes the number of lines of code (or 
new/changed lines of code in case the item existed before) 
and a complexity measure. The person-specific data consists 
of estimates for quality and productivity skills of all 
members of the development team. General or project-
specific data are, for instance, maximum productivity values 
(see above) or person costs per hour.  

For an application of the model within an industrial 
context, these input data should be determined from earlier 
projects. For an application of the model unrelated to a real-
life project, e.g., for educational purposes, it is possible to 
generate a stack of tasks (items) and a pool of persons 
randomly. Input and output data are stored in a text file 
linked via SDI Interface with the Extend simulation software 
[13]. An internal DB stores values for used distributions that 
can be changed if the model is to be fitted for a specific 
context. 
After starting the simulation it is possible to get some 
information on the progress by switching on the animation. 
The value of this information is, however, rather marginal. 
More useful tools for keeping the user informed about the 

dynamics of the model are plotter blocks, which show the 
charts of specified variables. Additionally, several variable 
values are displayed within the visual interface of the 
simulation model.  

V. EXPERIMENTS WITH THE MODEL 
In this Section, we use the simulation model for two 

experiment series on variants of the software development 
process. In both series, here denoted by A and B, the 
objectives ‘duration’ and ‘overall effort’ are considered. For 
facilitating comparisons, the third objective, product quality 
(i.e., the number of final defects), is assumed to be constant. 
This is achieved by requiring the test phase to continue until 
the desired level of the defect density is reached. This means 
that products with more defects entering the test phase 
require more test and rework effort.  

For the sub-processes testing and rework, it is calculated 
how much time the test activity requires to get a desired 
defects density. Thus, the rework effort depends on the 
number of defects to be found in tests, and after testing, the 
resulting number of remaining defects is always the same.  

In A, we analyze whether inspections of all or selected 
items are useful compared to a software development 
process without inspections. In B, we analyze the question of 
what an optimal size of an inspection team might be. 

Of course, there are further parameters of the simulation 
model that influence the effectiveness of inspections and that 
could be analyzed by the simulation model, e.g., the 
inspection technique. Corresponding studies based on the 
simulation model will be performed in the future.  

A. The Selection of Items for Inspection 
One of the key questions in introducing and planning 

inspections concerns the selection of items to be inspected. 
In order to compare different policies, we consider a project 
for producing software (creating new features for an existing 
product) with 100 items of different size, with 20 
developers, and compare the overall effort and time spent 
for a specific defect density. We analyze three variants of a 
software development process: a) without any inspections, b) 
with inspecting all items, and c) with inspecting all items 
with a defect density larger than 35 defects per KLOC. This 
defect density threshold turned out to be reasonable 
according to the given defect distribution. This assumption 
can give a baseline for the effects of an optimal selection of 
code units for the inspection. Usually the number of defects 
in a piece of code is not known. The assumption of knowing 
the defect density can, however, give an upper bound 
estimate for the effects of an optimal selection of code units 
for the inspection. Other rules will be tested in the near 
future. For instance, based on measurement data, we have 
developed a classification tree. Following the tree in an if-
then rule results in a single leaf for each code document 
giving the expected mean, the variance and standard 
deviation for the defects of this document. Now, for 
example, documents with an expected mean for the defects 
larger than a threshold could be inspected.   



 
 

Table 1 shows the simulation results for 100 items with a 
purposed defect density of 1.5 defects per 1000 lines of 
code. Note that the differences in the initial defects result 
from the stochastic nature of defect generation. The model 
shows that the introduction of inspections increases the 
effort spent for the coding phase, but if the inspections are 
executed, the effort spent for testing and rework is reduced. 

The overall effort is less for the simulation runs with 
inspections. Also, the duration of the project is shorter if 
inspections are executed.  

These results are in accordance with the one found in 
literature [27], which suggests that the effort spent for 
inspections is less than the effort saved for testing. The 
results for the simulation with selecting items for inspections 
show a slightly shorter duration but a higher overall effort. 
As observed in the simulation experiments, the reason for 
that behavior is the scheduling of tasks. Large error-prone 
modules take a long time for testing and rework and, if 
started late with these modules the duration is prolonged. 
Here scheduling and optimization algorithms [29] can help 
solvethese questions.  

As an alternative to the used testing policy, it would be 
possible to specify a time frame for how long a code item is 
tested (instead of specifying a desired defect density) so that 
the effort spent on testing could be kept constant. In that 
case, software development processes with inspections 
would result in better product quality at the end of the 
software development process. 

B. The Influence of the Team Size 
The number of found defects and the effort in the overall 

process (especially coding and test) depend on the number 
of inspectors involved in the inspection of one code item. 
For analyzing these effects we perform simulation runs of 
the model with the size of the inspection team varying from 
1 to 10. 

In Fig. 5 the graph shows the overall effort needed for the 
process. It significantly increases for more than four 
inspectors. Similar increases are shown for the duration for 
the overall process. If we consider the effort and the 
duration, the optimal number of inspectors is between two 
and four.  

The other two lines in the graph show the number of 
defects found and missed during the inspection. Here we can 
see that increasing the number of inspectors does increase 
the number of defects found, but only digressively. With 
more than seven inspectors the number of found defects does 
not increase significantly. Therefore, an inspection team size 

of more than seven inspectors is not useful for increasing 
product quality.  

As stated in [27], increasing the number of reviewers has 
a ceiling effect because the probability that defects are found 
by two or more inspectors increases with the number of 
inspectors. Therefore, adding inspectors does not increase 
the number of defects detected significantly and mainly 
increases the effort and time spent. 
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Fig. 5 Defects, duration and effort with respect to different numbers of 
inspectors (average values for 20 simulation runs).  

Note that this example application of the model prototype 
does not reflect the situation of a specific real-life company, 
since adequate data for an accurate description of the 
quantitative relationships were not available. Such an 
adaptation of the model to the situation of a specific 
industrial company is planned for the near future. 

VI. CONCLUSIONS 
In this article we presented an approach on how to create 

a discrete-event simulation model for code inspection 
processes in a systematic way. It is important to have sound 
experience in the field of software engineering and 
simulation. It is expected that the approach can help to 
create the model faster with less iterations. The model for 
planning inspections we presented clearly shows the effects 
of organizational changes. Since developing software is a 
creative and human-based activity, we included the skills 
and also some stochastic factors for non-predictable 
influences.  

The results of a simulation can show the influence of 
decisions during project planning and execution of actual or 
future projects. However, because of scarce data for 
determining the quantitative relationship and conceptional 
problems with the model validity (scope, etc.), the obtained 
results must be treated with caution. The model we 
presented will be extended in the future with a simple 

TABLE 1. 
 AVERAGE RESULTS OF 20 SIMULATION RUNS 

Inspection 
strategy 

Size of all 
items 

Initial 
defects 

Defects found 
in inspections 

Defects after 
inspections and 

rework 

Final 
defects 

Overall 
effort 

Process 
duration 

No 
inspections 25669 1129 0 0 33 11567,57 880,56 

All inspected 25669 1149 573 630 33 11062,94 764,07 

Select item 
for inspection 25669 1155 474 507 33 11177,16 750,76 



 
 

learning sub-model that considers the increase of knowledge 
and familiarity with the product during the execution of one 
or several tasks. We believe that over several projects the 
skill of the inspectors is increasing and has an influence of 
the overall performance in future projects. 

The future work will be to include the learning sub-model, 
connect the model to an ODCB database, and develop a 
user-friendly interface. We also want to test and refine our 
approach for creating a discrete-event simulation model. It is 
planned to create a more sophisticated test model.  
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