

Abstract— Due to the fact that organizations developing

software face ever increasing challenges to the quality, costs,
and duration of software development, process models are used
to understand, document, visualize, plan, and improve the
development process. Usually, these models show the static
structure of the processes, while the dynamic behavior is
difficult to predict. Simulation models of software development
processes can help to determine the process dynamics. While
most of the simulation models proposed up to now are based on
the system dynamics approach, we develop a discrete-event
simulation model focusing on the inspection process that allows
a more detailed representation of organizational issues,
products and resources. In contrast to a system dynamics
approach in a discrete-event simulation model, software
products (such as code components) and resources (such as
developers) are explicitly represented with attributes (e.g., size,
skills).

In this article we sketch the development of the model, its
structure, and the results of selected experiments with the
model. The model aims at supporting decision making for
introducing and tailoring inspections. The question of which
artifacts should be inspected and how inspection activities
should be staffed will be discussed. The model considers
influences of varying project and context conditions and can
therefore be used as a basis for the adaptation to different
development environments.

Index Terms—Decision Support, Discrete-Event Simulation,

Inspections, Process Optimization.

I. INTRODUCTION
ECISION support for planning software development
projects is a crucial success factor. The special
characteristics (such as context-orientation, uncertainty,

complexity, creativity, human-based processes) aggravate
the planning of software development projects in contrast to

Manuscript received October 16, 2002. This work was supported in part
by the German Bundesministerium für Bildung und Forschung (SEV
Project) and the Stiftung Rheinland-Pfalz für Innovation (ProSim Project,
no.: 559).

Holger Neu is with the Fraunhofer Institute Experimental Software
Engineering, Sauerwiesen 6, 67661 Kaiserslautern, Germany (phone: +49-
6301-707-155; fax: +49-6301-707-200; e-mail:
Holger.Neu@iese.fraunhofer.de).

Jürgen Münch is with the Fraunhofer Institute for Experimental
Software Engineering (IESE) in Kaiserslautern, Germany (e-mail:
muench@iese.fraunhofer.de).

Thomas Hanne is with the Fraunhofer Institute for Industrial
Mathematics (ITWM) in Kaiserslautern, Germany (e-mail:
hanne@itwm.fhg.de).

Stefan Nickel is with the Fraunhofer Institute for Industrial Mathematics
(ITWM) in Kaiserslautern, Germany (e-mail: nickel@itwm.fhg.de).

Andreas Wirsen is with the Fraunhofer Institute for Industrial
Mathematics (ITWM) in Kaiserslautern, Germany (e-mail:
wirsen@itwm.fhg.de).

the planning of many other production processes. The
selection and tailoring of appropriate software processes,
methods, and tools for the development of high quality
software requires knowledge about their effects under
varying project conditions. Up to now, selection has
essentially relied on subjective knowledge, empirically
gained experience from previous projects, or results from
expensive controlled laboratory experiments. This leads to a
situation where decisions concerning alternative processes
and alternative implementations are only insufficiently
supported.

In general, simulation can be used and already is being
used in technical environments for planning a system a priori
(e.g., before implementing it), for controlling it (e.g., for
operative or online usage), or for analyzing it (a posteriori
application). The reasons for creating a simulation model
can be classified with respect to six categories [15]: strategic
management, planning, control and operational management,
process improvement and technology adoption,
understanding, training and learning. The simulation model
we have developed is intended to support the planning with
respect to the following two aspects: On one hand, the
variables of interest (e.g., total effort) can be predicted for a
given process. On the other hand, simulation supports the
decision on selecting alternative processes.

Before building a simulation model, the scope of the
model has to be defined in accordance with the expected
result variables, the process abstraction, and the input
parameters. In general, the model scope usually fits one of
the following points of view: portion of the life cycle,
development project, multiple, concurrent projects, long-
term product evolution or long-term organization. For the
process abstraction, the model builder has to identify the key
elements of the process, the relationships between these
elements, and the behavior of these elements. Obviously, the
relevant elements are those necessary for fulfilling the
purpose of the model. Important elements to identify are, for
instance, the key activities and tasks, objects (code units,
designs, and reports), resources (staff, hardware),
dependencies between activities and flow of objects, loops
(iteration, feedback) and decision points, input parameters
and result variables. To run a simulation model, the input
parameters need to be initialized and the model has to be
calibrated and validated with respect to the target
organization. Validation can be done through reviews and
inspections of the model. However, in order to make a
model fit an organization, the input data has to come from
the organization. The quality of the simulation results
depends on the accuracy of the input data. In an industrial

Creating a Code Inspection Model for
Simulation-based Decision Support
Holger Neu, Thomas Hanne, Jürgen Münch, Stefan Nickel, Andreas Wirsen

D

This is the author's version of the work. The definite version was published in Proceedings of the 4th Intl. Workshop on Software Process
Simulation and Modeling (ProSim 2003), Portland, Oregon, USA, May 3-4, 2003.

setting, the data is often not available because the
measurement data needed was not captured or different
measures were collected. Useful strategies for handling these
situations can be found in [16]. Problems with the
availability of data and also with the acceptance of
simulation techniques when those are introduced are well
known from other areas of application, but experience has
shown that such difficulties can be overcome [17].

This paper discusses a discrete-event simulation model to
support the planning of code inspections, which was
developed within a larger research project [30]. Due to the
context-orientation of software development (i.e., there is no
unique approach for performing software development), a
method for the fast and cost-effective creation of simulation
models is needed. Hence, a corresponding method is
sketched based on our modeling experience with the
concrete inspection model. The paper is organized as
follows: In Section 2, some related work is discussed. In
Section 3, we sketch the method for building the discrete-
event simulation model. Section 4 describes the model
prototype and the rationales behind it. Section 5 presents
results from applying the simulation model to the problem of
appropriately selecting code items for inspections and
determining the size of inspection teams. Finally, Section 6
gives an outlook on future work.

II. RELATED WORK
A plethora of approaches has been proposed to support

decision-making in software development (e.g., decision
tables, expert systems, experience analysis). One promising
approach is based upon the combination of process
simulation and empirical data from real experiments and
case studies. Rus et al. [18] describe the benefits in the
following way: “(a) Simulation can use the empirical results
from different contexts and apply them to a planning
situation as appropriate. (b) The analysis of simulation
results can point out situations and factors for which
conducting empirical studies would be most worthwhile.
Empirical studies about software inspections are an
established discipline. A multitude of controlled experiments
and case studies has been reported in the literature (e.g.,
[19]). Moreover, modeling and simulation are increasingly
applied to software processes and broaden their
understanding. Raffo et al. [20] describe the multifaceted
relationships between empirical studies and the building,
deployment and usage of process and simulation models.
Several models for simulating inspections are described.
They mainly differ with regard to the intended purpose (e.g.,
prediction, control), the dependent variables of interest (e.g.,
cycle time, reliability), the development phases considered
(e.g., design, all phases), the simulation technique, and the
degree of combining simulation with other techniques that
support process understanding (e.g., descriptive process
modeling, GQM). In the following, some essential
contributions are sketched.

Rus et al. [21] present a process simulator for decision
support that focuses on the impact of engineering practices
on software reliability. The simulator consists of a system
dynamics model and a discrete-event simulation model. The

continuous model is intended to support project planning
and predict the impact of management and reliability
engineering decisions. The discrete-event model is better
suited for supporting project controlling. One main purpose
of the discrete-event model is to predict, track, and control
software defects and failure throughout a specified period.

Madachy [22] sketches a system dynamics simulation
model of an inspection-based life cycle process that
demonstrates the effects of performing inspections or not
performing them, the effectiveness of varied inspection
policies, and the effects of other managerial decisions such
as resource allocation. The model does not take into account
schedule pressure effects and personnel mix.

Tvedt and Collofello [23] describe a system dynamics
model aiming at decision support with regard to several
process improvement alternatives. The dependent variable of
interest is cycle time. The model is intended for
understanding cause-effect relationships such as the
influence of the implementation of inspections on cycle time
reduction. The modeling approach distinguishes between a
base model and several modular process improvement
models (i.e., one for each improvement alternative).

Pfahl and Lebsanft [25] combine process simulation
techniques with static modeling methods, namely software
process modeling and measurement-based quantitative
modeling. They propose the IMMoS approach that
integrates system dynamics modeling with descriptive
process modeling and goal-oriented measurement. The
descriptive process model is used as a starting point for
identifying causal relationships. Goal-oriented measurement
is used for deriving measures from goals that are determined
by the needs of a system dynamics model. Benefits of this
combination are synergy effects from using already existing
and proven methods and overcoming weaknesses of system
dynamics model building.

In contrast to these contributions, the simulation model
described in this paper is the first discrete one, focusing
more strongly on the organizational and personal influence
factors on inspections. It is mainly developed for decision
support purposes.

Several papers discuss the steps towards building discrete-
event simulation models. As an example, Raffo and Harrison
[24] describe the creation of a discrete-event simulation
model with the focus on integrating feedback from the
software development process.

In contrast, the method sketched in this paper focuses on
the integration with descriptive process modeling and goal-
orientation as well as on integrating organizational issues of
the development process. For modeling organizational
issues, we need a greater level of detail. Discrete-event
simulation models are more concrete than system dynamics
models with regard to the static objects (tasks) and moving
objects (work products) in the process. Also, it is possible to
model individual persons and distinguish between work
products [28].

III. BUILDING THE MODEL
In this Section, we explain the steps of building the discrete-
event simulation model. Since many publications in the area

of software processes modeling only describe simulation
models and results of their application, our focus is now on
explaining the steps of building a model. These steps are
based on our practical experience and will be refined in the
future in order to define a method for the creation of
discrete-event simulation models in a systematic procedure.
This method is similar to the one proposed in [1], which
considers the case of creating system dynamics models. We
give a short summary of the steps that are explained later in
more detail.

In the first step, the goal of the simulation has to be
defined. Then, as a second step, the static process model, if
one exists, has to be analyzed, otherwise a process model
has to be created before. Step one and two can be performed
in parallel. In the third step, we identify the factors that
influence the interesting variables according to the goal of
the simulation. In the fourth step, we determine the
quantitative relationships required for the discrete-event
simulation model. Although these steps seem to be
performed in a sequential order, it is often necessary to go
back to previous steps, i.e., a simulation model is usually
developed in an iterative way.

A. Step 1: Definition of the Simulation Goal
If a simulation model is detailed enough, it can be used to

satisfy various different goals. The effort for building such a
detailed model, if possible at all, is far too high to be
reasonable. Therefore, we have to reduce the model level of
detail to address the most important goals of the simulation
project, which can be identified by the GQM
(Goal/Question/Metric) [8][9] method. GQM is usually
applied for defining the measures to be collected during a
project for purposes such as understanding, controlling, or
improving. In our context, the defined metrics are not used
for creating a measurement plan; instead, they can be used to
identify possible input and output parameters.

The GQM goal definition consists of five dimensions,
which describe the goals in a structured way.

Analyze the object of the study
for a specific purpose
with respect to a quality focus
from a specific viewpoint
in a specific context.

Here we addressed the major goals, in order to determine the
influence of organizational settings on (1) effort, (2)
duration, and (3) quality by simulation. Because GQM
goals should not cluster more than one purpose, one quality
focus, and one viewpoint, the major goal should be divided
into three GQM goal descriptions (e.g., analyze the
inspection process for the purpose of decision-making with
respect to effort from the viewpoint of a project planner in
the context of company X).

The derivation of metrics with a GQM plan or the
creation of GQM abstraction sheets can be used as a means
for identifying independent variables (i.e., input variables for
the simulation model) for a specific quality focus. The
model granularity mainly depends on the viewpoint (i.e., a
manager might be interested in a more abstract view than a
developer) and the purpose (i.e., the expected results imply
adequate model granularity). The object of the study might

also influence the granularity (e.g., a process description
cannot be further refined).

B. Step 2: Development of a Static Process Model
A static1 process model describes the relationships

between activities (processes), artifacts (products), roles and
tools. The relationships between the activities and the
artifacts are described in a product flow model, which shows
the products used, produced and modified by an activity.
The roles and tools are connected to the activities in an
involved or used relation. A role is involved in an activity or
a tool is used when performing that particular activity.
Sometimes a control flow completes the process model. A
product transition model can help to understand the order of
transformations if many activities with a lot of
transformations are within the scope of the model.

For creating or refining the static process model we use
the elicitation-based approach as proposed in [4] and the
process modeling tool SPEARMINT [10]. The graphic
representation of the static process model can depict the
flow structure of the model and eases the creation of flow
logic in Step 4.

Fig. 1 Product flow of an inspection process according to [2].

In Fig. 1 the product flow of an inspection process is
shown. The product flow includes the detailed activities of
the inspection process and the artifacts that are being used,
produced, and modified. It does not show explicitly the
order of the activities performed during the inspection. If the
order of activities is not obvious in the product flow
diagram, it is possible to create a control flow diagram to
show this order. Fig. 1 shows, for example, the inspection
process, which is the refinement of the verification activity
in the context of the coding activity. The activity inspect
component code in Fig. 2 is the activity that contains the
sub-process inspection.

Fig. 2: The coding process with the component design as input and the
inspected code as output parameter

In addition to the graphical representation, the static

1 A model is called static if there is no change in the model when the

process is performed. A dynamic model changes over time and has a
different state at every point in time.

process model contains attributes that can be used to identify
the variables of the qualitative model [1].

C. Step 3: Development of a Qualitative Model
The qualitative model describes the relationships between

the influencing factors and the relevant factors with respect
to the goals. The determination of the influencing factors can
be supported by the static process model, the experience of
the modeler, the knowledge found in literature (e.g., results
of laboratory studies), interviews with practitioners, and data
mining. In many cases the factors are equal to those in other
models and, therefore, the modeler can start with a basic set
of factors.

The attributes from the static process model can be used
to determine the variables for the dynamic model, e.g.,
attributes like lines of code (LOC) or defects, or times like
the duration of an activity are supposed to be represented in
the qualitative model.

A good visualization technique for qualitative models are
cause-effect diagrams, causal-loop diagrams [3], or
influence diagrams. They visualize the relations with arrows
and the direction of the influence with plus or minus signs. A
plus (minus) sign indicates that an increase in the influencing
variable causes an increase (decrease) in the dependent
variable. Cause-effect diagrams are also applied in
developing system dynamics models, which are often used in
software process modeling and simulation.

Number of
Detected

Defects in an
Inspection

Reading
technique

Size of the
Product

Experience of
Inspectors Complexitiy of

the Product

Effort
+

Number of
Inspectors

+

+
+

+

Team Size
+

-

+

Time
Pressure

Human
Effect

-

Development
Experience

Inspection
Experience

Domain
Experience

Inspection
Productivity

+-

+

Number of
Component

Code Modules
Assignment
to Inspection

Assigned
Inspections

ToDo

Assigned
Inspections

done

Working
Time+
+

+

-
++

+

-

+

+

Familarity with
the Product

Inspected Size of
the Product +

-

+
+

Fig. 3: A cause-effect diagram of an inspection process where the effort
and the number of detected defects are the interesting factors.

Fig. 3 shows a cause-effect diagram of the two objective
variables effort and number of detected defects in an
inspection. Several of these factors are typical attributes of
the artifacts, the activities, or the roles in the static process
model that could be measured during the execution of the
process. If empirical data is available from former projects,
these data can be used in step four to determine the
quantitative relationships for the model.

The measures identified during the goal definition in the
beginning can aid in identifying variables that are not in the
static process model, especially the behavior of the people
performing the process.

D. Step 4: Development of a Quantitative Model
In the fourth step, the information collected in the first

three steps is considered for quantifying the model. The
GQM goal and plan can be used to derive the variable values
that are set before or changed during the simulation. Also,
the variables obtained as simulation results are specified by

GQM. Usually, the input parameters are variables that are
measured during a measurement program, as well as
characteristics of the project, involved personnel, and the
organization.

From the static model we know the sequence of steps, the
decision points, and the activities where effort is consumed.
The qualitative model depicts the input factors that influence
the output factors and their dependencies. Note that the type
of simulation model (discrete-event or system dynamics)
pre-specifies extent and form of information to be
quantified. On the other hand, the desired level of
granularity and other goals related to the simulation
determine the model type. Below, we focus on building a
discrete-event simulation model because of its more detailed
representation of organizational processes and persons and
items related to them.

The simulation model is built by following the flow and
control diagram and considering the related cause-effect
relationships for each activity in the flow or control diagram.
Both then define an activity block inside the simulation
model with its related input and output variables.

Inside an activity block the relationships qualitatively
described by the cause-effect diagrams have to be quantified
by mathematical equations or some logical relationships.
This is done by selecting one variable after another in the
considered cause-effect diagram as an output variable, which
then has to be explained by some variables it depends on.
These input variables are predecessors in the cause-effect
graph. Possible methods for quantifying the relationships
between the output variable and the related input variables
are expert interviews, pragmatic models, stochastic analysis,
and data mining techniques.
Here one has to distinguish between the quantification of
known relationships, i.e., exact linguistic descriptions that
are available and have to be transformed into mathematical
functions, and the generation of rules by applying data
mining techniques to measurement data to describe
relationships that are not obvious or were not considered up
to now. The latter one is the case in simulating the software
inspection process, for example.
The choice of the data mining techniques for rule generation
depends, of course, on the data or information available, i.e.,
measurement data, linguistic descriptions, etc. The
granularity of the model also determines the measurement
data needed for rule generation, i.e., measurement data or
information for all chosen variables are required. It is
obvious that for building a discrete-event simulation model,
more measurements are needed than for building a system
dynamics model, since the former one includes many more
variables. In a discrete-event simulation approach we also
have to keep in mind that variables might have different
states for similar objects, i.e., developers have different
coding or inspection skills.
The techniques we considered up to now for the
quantification of the qualitatively known relationships
described in the cause-effect diagrams are neural networks
and classification trees.
The neural networks used are feed forward neural networks
with one hidden layer and a single output [5][6]. The

corresponding network function is the mathematical
equation describing the input-output relationship for the
considered node in the cause-effect diagram and can be
plugged into the simulation model. The network function
includes input-output weights for each unit in the hidden
layer, which have to be determined. In general the weights
are estimated from industrial data. The industrial data is split
into a training set and a validation set. The training set is
then used to estimate the weights of the network function,
and the validation set is used to determine the quality of the
resulting network function, i.e., the input variables were
given values from the validation set. The network function is
then evaluated for the given input values and the analytical
calculated output is compared with the corresponding
measurement data.
The problem, which often occurs especially in the context of
the software development process, is that measurement data
is not available for all input variables . In this case one has
to make further assumptions or skip these variables.
Relevance measures [11], for example the partial derivatives
of the network function with respect to the input variable,
can help to determine the impact of each explaining (input)
variable with respect to the explained (output) variable. By
considering the validation results and the corresponding
relevance measure, one can easily verify whether the
estimated functional dependencies describe the input/output
relation in a sufficient manner, whether the impact of a
skipped variable is too large or whether an explaining
(input) variable is missing. In the latter case, the missing
variable should be determined, e.g., through a case-based-
reasoning method [14], and a new rule has to be generated
for it by considering more possible input variables than
considered in the qualitative model or applying other data
mining techniques. If a variable has very small relevance
across its whole parameter range, it is redundant and does
not explain the considered output variable. Thus, a relevance
measure can also be used to validate the qualitative
description of the dependencies given in the cause-effect
diagrams.
The second technique applied for the quantification of the
relationships we used are classification trees determined by
the software tool XpertRule Miner [7]. Based on the
information gain technique, a classification tree for an
explained variable is calculated on the data set. The tree can
be read from root to a leaf as a logical if-then rule for the
input-output relationship. A leaf of the tree contains
information about the percentage, variance, mean and
standard deviation for the explained variable when applying
the corresponding rule. Thus, the root of the tree denotes the
variable with the greatest impact with respect to the
explained variable. The splitting criterion used is based on
the normalized standard deviation [7].
The relationships developed in this step will be used when
the model is created and the equations are implemented in
the model. The input parameters for the equations have to be
provided with the input parameters for the model.
Currently, we are analyzing data on historical software
development processes coming from two large companies.
Unfortunately, these data (which were not collected for the
purpose of fitting a simulation model) cover only some

variables required for the discrete-event simulation model
presented here. For instance, information on the assignment
of tasks to persons and individual working times is missing.
On the other hand, the data differ essentially from company
to company, e.g., because of different organizational settings
and measurement techniques.

Therefore, in the model discussed below we do not use
complex functional relationships (as derived, for instance,
from neural networks), but more simple functions as typical
in the literature, which were adapted using the available
industrial data and data from the literature. However, for
application in industrial settings the more complex
functional relationships should be used, since this allows a
detailed adaptation to a company with its specific
environment settings. Nevertheless, building and presenting
the model is the first step in convincing software developers
to collect the required data, which will then be used for
model adaptation and refinement.

IV. BUILDING A DISCRETE-EVENT SIMULATION MODEL
In the following, we describe the discrete-event simulation

model, which is being developed as a prototype decision
support tool for planning inspection processes. For building
the model, we used the simulation tool Extend [12], which
allows to build both discrete-event and continuous
simulation models.

A. High-level Architecture of the Model
The macro structure of the simulation model reflects the

sequence of tasks or sub-processes (such as design, coding,
inspection, and unit test) according to the process diagram
(Fig. 2). Similar to physical items in material flow systems,
the software items are moved through these sub-processes of
a typical software development process. Therefore, design
and code documents (items) are represented by moving units
(MUs) while static objects represent the tasks. The most
important object for representing a task is an activity block.
Such a block stores an item for the duration or working time
of the corresponding activity and, thus, represents the
temporal structure of a project.

Besides the duration, each task affects the quality of the
processed item. In general, we assume that the quality of an
item (design document, code document) is measured by its
number of defects. Thus, during design2 and coding, items
with a specific size and number of defects are created.
During inspection and test, some of the defects are found.
During rework, found defects are removed (and possibly
some new defects are produced).

For all activities represented by the model, we assume that
their results are determined by attributes of the processed
item, attributes of the person who performs the tasks, and
organizational factors as qualitatively described in the
related cause-effect diagram. For considering effects specific
to the person assigned to the task, developers are represented
by MUs just like items. In Extend, the linking of items and
persons prior to a specific task is done by a block creating a

2 In the following, especially in the simulation experiments discussed in

Subsection D, we only consider the planning of code inspections that are
assumed to be modeled in a more detailed and reliable way.

compound MU, which represents an item together with an
assigned person. Up to now, one main assumption of the
model is that the assignment of tasks to persons is done in an
arbitrary way or, more precisely, persons are selected from a
staff pool in a "first come, first serve" (fcfs) fashion. This
means that at the start of a simulation run items are batched
with persons according to a given order (determined by item
and person numbers) as long as persons are available. Later
on, items waiting for their next processing steps are batched
with the persons becoming available next.

Unlike the other tasks, inspections are assumed to be done
in an interrupting way such that persons involved in coding
or testing may interrupt their tasks and read the documents
to be inspected in between. Thus, waiting times for building
an inspection team can be avoided in the model.

After accomplishing a task, linked items and persons are
un-batched. Persons are then directed back to the pool from
where they are assigned and sent to new tasks. Items are
directed to the subsequent sub-process, e.g., from design to
coding or from inspection to rework. In some cases, there
are alternatives for routing an item. For instance, rules may
be applied for deciding on whether an item is subject to
inspection or not. Moreover, switches can be used for
activating or deactivating some parts of the model, e.g., the
inspections, the design, or the testing and rework activity. In
general, the connections of processes and sub-processes and
the routing logic for the MUs should represent
organizational rules of a considered real-life company.

Most of the Extend blocks in Fig. 4 are for accessing
attributes or variables and for calculating and assigning new
values. For instance, in the coding sub-process, the number
of produced defects is calculated; in the inspection and test
processes, the number of found defects is calculated, and in
the rework processes, the number of defects is updated
(considering new defects produced during rework).

The general sequence of blocks representing one sub-
process serves the following purposes: First, the working
time of the activity has to be calculated. Then, a compound

item enters the activity block and stays there for that time.
After that, its number of defects is updated.

The most important issue of each sub-process is to
represent the quantitative relationships of the model in a
valid way. This especially concerns the outputs of an
activity, i.e., its consumed time and the effects on the
number of defects. In general, these values are determined
by attributes of the items, by attributes of the persons, and by
general or project-specific factors. For some of the relevant
data it is hardly possible to determine the necessary
information in real-life projects. For instance, details on the
specific experiences, skills, and productivities of persons are
usually not available. Therefore, we are elaborating
approaches for taking such human attributes into account,
which are not directly observable, and for considering them
in the quantitative logic of the model.

B. Quantitative Relationships of the Model
Following the guideline sketched in the previous section,

we now explain some quantitative relationships that
determine intermediary and output variables. Some of the
variables used in the quantitative relationships are related to
a code item i, or a person j, others are general parameters of
the model.

1) Parameters and Assumptions
For an item i, we assume that its size, sizei, (measured,

e.g., by the number of lines of code) and its difficulty or
complexity, cplxi, are the most important factors for the
results of an activity. The complexity cplxi is assumed to be
an adjusting factor distributed around 1, which serves for
weighting the size according to the specific difficulty of
processing the item.

For a person j, we assume that specific skills determine
his or her quality of work and his or her productivity (work
load per time unit) and, thus, the change in the number of
defects and the time needed for performing a task. The
specific skill values of the model are the coding quality skill
(cqsj), the preparation (inspection) quality skill (pqsj), the

Fig. 4. Excerpt from the Extend visual Interface of the model. Coding with the inspection of selected code items. Items pass the main line
from left to right. The first block on the left is a batch block for combining code modules and persons; the last on the right separates the
batched modules and people.

coding productivity skill (cpsj), preparation productivity skill
(ppsj), and the testing productivity skill (tpsj).

For ease of use we assume these skill values to be
calibrated on a nondimensional [0,1] interval. Moreover,
working with such skill values instead of personal
productivities allows an easier application of a learning
model such as, for instance, [31]. A skill value of about 0.5
is typical for an average developer, while a value near 1
characterizes an experienced or high performance developer.
Multiplied with given values for maximum quality of work
or a maximum productivity (corresponding to skill values of
1), a person’s actual defect (production, detection) rate and
productivity can be determined. Thus, the following model
parameters with respect to productivities are used: a
maximum coding productivity, mcp, a maximum preparation
productivity, mpp, and a maximum testing productivity, mtp.

With respect to defects, the following model parameters
are used: The number of defects in relation to the size of the
document to be produced is expressed by a minimum defect
density, mdd. For rework, it is assumed that all found defects
are removed but some of them not correctly, or that new
defects are produced in a proportional relationship to the
correctly removed ones. For expressing the ratio of new
defects with respect to the removed ones, a rework defects
factor rdf with rdf < 1 is used. For the unit test, a defect find
rate, dfr, is applied. Note that all these model parameters are
specific to various characteristics of a software development
project, which are not explicitly considered in the model,
e.g., the programming language and development tools.

2) Defect generation, detection, and rework
For the activity coding the number of defects produced

during coding, pdi, is calculated by:

jiii cqsmddcplxsizepd ⋅⋅= (1)
For the number of found defects during an inspection we

consider the underlying cause-effect diagram (Fig. 3) to
show the development of the equation for the defects found
during an inspection for one item fdii. Thus fdii is the output
variable and all other nodes connected with this variable
serve as the explaining (input) variables.

()() iiiji cplxpdgefitsteffdi ⋅⋅−= exp1 (2)
Note that not all influencing factor from the cause-effect

diagram (Fig. 3) appear in this formula, some of them are
omitted because of a lack of data and measurement
problems, e.g., familiarity with the product. Other factors,
e.g., size, are indirectly considered. (The size is used for
calculating the number of produced defects pdi .)

tefi is a team effectiveness factor depending on the skills
of the individual team members and other factors. A value of
tefi = 3/7, for instance, corresponds to a situation where 7
inspectors find 95% of the defects. For the inspection team,
the number of found defects is assumed to be smaller than
the sum of individually found defects (because of double
counting). Therefore, the team size itsi is in a degressively
increasing relationship to the number of found defects.

 gef is a general effectiveness factor that reflects, for
instance, the effectiveness of the chosen inspection or
reading technique.

The new defects produced during rework are calculated

by

ii fdrdfrd ⋅= (3)
where fdi is the number of found defects during the

previous inspection or test.
Additionally defects are also found during testing. We

assume that these are in an exponential relationship to the
testing time tti [32] as follows:

()()ijii tttpsdfrdfdt ⋅⋅−−= exp1 , (4)

where di are the defects remaining after coding,
inspection, and rework. Alternatively, the number of to be
found defects (or a desired defect density) may be pre-
specified. In that case the above formula may be transformed
for calculating the required testing time. The effects of
rework after test are calculated in the same way as those of
rework after inspection.

3) Effort
Based on the above assumptions, the relationships for

determining processing times of activities (performed by
person j on item i) and their effects on the number of defects
can be expressed as follows. For the coding time, cti:

()jiii cpsmcpcplxsizect ⋅⋅= . (5)

The individual preparation time, ptij, of an inspector is
calculated as follows:

()jiiij ppsmppcplxsizept ⋅⋅= . (6)

The size can be the size of the actually inspected code if
existing code is changed, or the total size for a new
development. The rework activities are assumed to be
closely connected to the coding activities. Thus, the same
skill values are also used for determining the rework time.
The relationship between rework activities (measured by the
number of defects to be removed) and coding activities
(measured by the size of the item to be produced) is
expressed by an artificial factor, the average defect size, ads.
The time for rework is then calculated by:

()jiii cpsmcpadscplxfdrt ⋅⋅⋅= . (7)

The overall effort is computed by summing up all effort
data that are calculated using the time needed for the
activities of item i.

4) Duration
The goal variable duration results for each simulation run

when the starting and finishing times of all activities, i.e., the
project schedule, are fixed.

C. Other Aspects of Modeling
Due to the chosen granularity defined in the goal

definition and other assumptions (see IV.B.1), not all details
of the real-life software development process are modeled.
For instance, meetings prior to an inspection are not
represented in the model. Let us note that the sub-processes
outside our model focus are modeled in a rougher way.
Similarly, aspects outside the considered project are
neglected, for instance the involvement of persons in other
tasks or different projects. It would, in principle, be possible
to have a pre-specified timetable for each person defining
their availability for the current project.

Most human factors except productivity and quality skills
for coding and inspection are neglected up to now. An
extension of the model for representing effects of time

pressure is under development. The organizational factors
are expressed in the values for maximum productivities, etc.,
which are assumed to be fixed for the given project. For
setting these values of the given model, real-life data from
industrial software development processes has been used.
This data is not available up to now and we are also looking
for data from the fields of psychology and manpower
studies.

Even after careful refinement of the quantitative
relationships, there are essential effects in a software
development process that cannot be fully determined a
priori, for instance, human effects such as fatigue, boredom,
and other physical and mental factors. These human effects
are considered by having stochastic elements in the process,
which influence, for instance, the working times and
numbers of defects produced. Therefore, the results of an
activity with respect to the changed number of defects and
the time needed for performing it are considered as random.
For this reason, the above values are multiplied by random
factors, which are assumed to be stochastically determined
according to a lognormal distribution with an expected value
1. Multiple runs of the model can be used for estimating the
effects of such random influences on the distribution of the
model outputs, especially with respect to the objectives
quality, project duration, and costs. Using such information,
a project manager may get a better feeling for the risks
within a scheduled project.

Another key aspect of real-life projects not explicitly
treated is that of scheduling. The implicit fcfs task
assignment and scheduling leads to sub-optimal results and
can be improved as worked out in [29].

D. Application of the Model
As input data, the simulation model requires a

specification of a software development project. Roughly
said, such a project consists of item-specific data, person-
specific data, and project-specific or general data. For each
item to be produced (e.g., the source code of a module), the
item-specific data includes the number of lines of code (or
new/changed lines of code in case the item existed before)
and a complexity measure. The person-specific data consists
of estimates for quality and productivity skills of all
members of the development team. General or project-
specific data are, for instance, maximum productivity values
(see above) or person costs per hour.

For an application of the model within an industrial
context, these input data should be determined from earlier
projects. For an application of the model unrelated to a real-
life project, e.g., for educational purposes, it is possible to
generate a stack of tasks (items) and a pool of persons
randomly. Input and output data are stored in a text file
linked via SDI Interface with the Extend simulation software
[13]. An internal DB stores values for used distributions that
can be changed if the model is to be fitted for a specific
context.
After starting the simulation it is possible to get some
information on the progress by switching on the animation.
The value of this information is, however, rather marginal.
More useful tools for keeping the user informed about the

dynamics of the model are plotter blocks, which show the
charts of specified variables. Additionally, several variable
values are displayed within the visual interface of the
simulation model.

V. EXPERIMENTS WITH THE MODEL
In this Section, we use the simulation model for two

experiment series on variants of the software development
process. In both series, here denoted by A and B, the
objectives ‘duration’ and ‘overall effort’ are considered. For
facilitating comparisons, the third objective, product quality
(i.e., the number of final defects), is assumed to be constant.
This is achieved by requiring the test phase to continue until
the desired level of the defect density is reached. This means
that products with more defects entering the test phase
require more test and rework effort.

For the sub-processes testing and rework, it is calculated
how much time the test activity requires to get a desired
defects density. Thus, the rework effort depends on the
number of defects to be found in tests, and after testing, the
resulting number of remaining defects is always the same.

In A, we analyze whether inspections of all or selected
items are useful compared to a software development
process without inspections. In B, we analyze the question of
what an optimal size of an inspection team might be.

Of course, there are further parameters of the simulation
model that influence the effectiveness of inspections and that
could be analyzed by the simulation model, e.g., the
inspection technique. Corresponding studies based on the
simulation model will be performed in the future.

A. The Selection of Items for Inspection
One of the key questions in introducing and planning

inspections concerns the selection of items to be inspected.
In order to compare different policies, we consider a project
for producing software (creating new features for an existing
product) with 100 items of different size, with 20
developers, and compare the overall effort and time spent
for a specific defect density. We analyze three variants of a
software development process: a) without any inspections, b)
with inspecting all items, and c) with inspecting all items
with a defect density larger than 35 defects per KLOC. This
defect density threshold turned out to be reasonable
according to the given defect distribution. This assumption
can give a baseline for the effects of an optimal selection of
code units for the inspection. Usually the number of defects
in a piece of code is not known. The assumption of knowing
the defect density can, however, give an upper bound
estimate for the effects of an optimal selection of code units
for the inspection. Other rules will be tested in the near
future. For instance, based on measurement data, we have
developed a classification tree. Following the tree in an if-
then rule results in a single leaf for each code document
giving the expected mean, the variance and standard
deviation for the defects of this document. Now, for
example, documents with an expected mean for the defects
larger than a threshold could be inspected.

Table 1 shows the simulation results for 100 items with a
purposed defect density of 1.5 defects per 1000 lines of
code. Note that the differences in the initial defects result
from the stochastic nature of defect generation. The model
shows that the introduction of inspections increases the
effort spent for the coding phase, but if the inspections are
executed, the effort spent for testing and rework is reduced.

The overall effort is less for the simulation runs with
inspections. Also, the duration of the project is shorter if
inspections are executed.

These results are in accordance with the one found in
literature [27], which suggests that the effort spent for
inspections is less than the effort saved for testing. The
results for the simulation with selecting items for inspections
show a slightly shorter duration but a higher overall effort.
As observed in the simulation experiments, the reason for
that behavior is the scheduling of tasks. Large error-prone
modules take a long time for testing and rework and, if
started late with these modules the duration is prolonged.
Here scheduling and optimization algorithms [29] can help
solvethese questions.

As an alternative to the used testing policy, it would be
possible to specify a time frame for how long a code item is
tested (instead of specifying a desired defect density) so that
the effort spent on testing could be kept constant. In that
case, software development processes with inspections
would result in better product quality at the end of the
software development process.

B. The Influence of the Team Size
The number of found defects and the effort in the overall

process (especially coding and test) depend on the number
of inspectors involved in the inspection of one code item.
For analyzing these effects we perform simulation runs of
the model with the size of the inspection team varying from
1 to 10.

In Fig. 5 the graph shows the overall effort needed for the
process. It significantly increases for more than four
inspectors. Similar increases are shown for the duration for
the overall process. If we consider the effort and the
duration, the optimal number of inspectors is between two
and four.

The other two lines in the graph show the number of
defects found and missed during the inspection. Here we can
see that increasing the number of inspectors does increase
the number of defects found, but only digressively. With
more than seven inspectors the number of found defects does
not increase significantly. Therefore, an inspection team size

of more than seven inspectors is not useful for increasing
product quality.

As stated in [27], increasing the number of reviewers has
a ceiling effect because the probability that defects are found
by two or more inspectors increases with the number of
inspectors. Therefore, adding inspectors does not increase
the number of defects detected significantly and mainly
increases the effort and time spent.

200
300
400
500
600
700
800
900

1000
1100
1200
1300

0 1 2 3 4 5 6 7 8 9 10 11

Inspection team size

Defects found
in inspection

Defects after
inspecion

Overall effort
[person days]

Duration
[hours]

Fig. 5 Defects, duration and effort with respect to different numbers of
inspectors (average values for 20 simulation runs).

Note that this example application of the model prototype
does not reflect the situation of a specific real-life company,
since adequate data for an accurate description of the
quantitative relationships were not available. Such an
adaptation of the model to the situation of a specific
industrial company is planned for the near future.

VI. CONCLUSIONS
In this article we presented an approach on how to create

a discrete-event simulation model for code inspection
processes in a systematic way. It is important to have sound
experience in the field of software engineering and
simulation. It is expected that the approach can help to
create the model faster with less iterations. The model for
planning inspections we presented clearly shows the effects
of organizational changes. Since developing software is a
creative and human-based activity, we included the skills
and also some stochastic factors for non-predictable
influences.

The results of a simulation can show the influence of
decisions during project planning and execution of actual or
future projects. However, because of scarce data for
determining the quantitative relationship and conceptional
problems with the model validity (scope, etc.), the obtained
results must be treated with caution. The model we
presented will be extended in the future with a simple

TABLE 1.
 AVERAGE RESULTS OF 20 SIMULATION RUNS

Inspection
strategy

Size of all
items

Initial
defects

Defects found
in inspections

Defects after
inspections and

rework

Final
defects

Overall
effort

Process
duration

No
inspections 25669 1129 0 0 33 11567,57 880,56

All inspected 25669 1149 573 630 33 11062,94 764,07

Select item
for inspection 25669 1155 474 507 33 11177,16 750,76

learning sub-model that considers the increase of knowledge
and familiarity with the product during the execution of one
or several tasks. We believe that over several projects the
skill of the inspectors is increasing and has an influence of
the overall performance in future projects.

The future work will be to include the learning sub-model,
connect the model to an ODCB database, and develop a
user-friendly interface. We also want to test and refine our
approach for creating a discrete-event simulation model. It is
planned to create a more sophisticated test model.

ACKNOWLEDGMENT
We would like to thank especially Ioana Rus from the

Fraunhofer Center for Experimental Software Engineering,
Maryland for her useful comments on the paper and our
work. Also we thank Sonnhild Namingha from the
Fraunhofer Institute Experimental Software Engineering for
reviewing the first version of the article.

REFERENCES
[1] D. Pfahl: “An Integrated Approach to Simulation-Based Learning in

Support of Strategic and Project Management in Software
Organisations”, Stuttgart: Fraunhofer IRB Verlag, 2001.

[2] R.G. Ebenau, S.H. Strauss: “Software Inspection Process”, New
York: McGraw-Hill, Inc., 1994.

[3] J. D. Sterman: “Busines Dynamics – Systems Thinking and Modeling
for a Complex World”, Irwin McGraw-Hill, 2000.

[4] U. Becker-Kornstaedt: “Towards Systematic Knowledge Elicitation
for Descriptive Software Process Modeling”, In F. Bomarius and S.
Komi-Sirviö, editors, Proceedings of the Third International
Conference on Product–Focused Software Processes Improvement
(PROFES), Lecture Notes in Computer Science 2188, pages 312–
325, Kaiserslautern, September 2001. Springer.

[5] H. White: Learning in artificial neural networks: A statistical
perspective. Neural Computation 1, 1989, 425-464.

[6] H. White: Connectionist nonparametric regression: multi layer feed
forward networks can learn arbitrary mappings. Neural Networks 3,
1990, 535-549.

[7] XpertRule Miner, Attar Software GmbH: www.attar.com.
[8] R. van Solingen, E. Berghout: “The Goal/Question/Metric Method: a

practical guide for quality improvement of software development”,
London: McGraw Hill, inc., 1999.

[9] L.C. Brinad, C. Differding, H.D. Rombach: “Practical guidelines for
measurement-based process improvement”, Fraunhofer Institute for
Experimental Software Engineering, Germany, ISERN-96-05, 1996

[10] Spearmint: http://www.iese.fhg.de/Spearmint_EPG/
[11] A. Sarishvili: “Neural Network Based Lag Selection for Multivariate

Time Series”, PhD. Thesis, University of Kaiserslautern, 2002.
[12] D. Krahl: “The Extend simulation environment”, J.A. Joines, R. R.

Barton, K. Kang, P. A. Fishwick (Eds.): Proceedings of the 2000
Winter Simulation Conference. IEEE Press, 2000, 280-289.

[13] A. J. Siprelle R. A. Phelps M. M.Barnes: “SDI INDUSTRY: AN
EXTEND-BASED TOOL FOR CONTINUOUS AND HIGH-SPEED
MANUFACTURING”, Proceedings of the 30th conference on Winter
simulation, 1998, Washington, D.C., United States, Pages: 349 - 358

[14] R. Bergmann, S. Breen, M. Göker, M. Manago, S. Wess:
“Developing Industrial Case-Based Reasoning Applications”, Lecture
Notes in Artificial Intelligence, Subseries of Lecture Notes in
Computer Science, Springer, 1998

[15] M. I. Kellner, R. J. Madachy, D. M. Raffo: “Software process
simulation modeling: Why? What? How?”, Journal of Systems and
Software 46, 2-3, 1999, 91-105.

[16] M. Kellner, D. Raffo: “Measurement issues in quantitative
simulations of process models”, Proceedings of the Workshop on
Process Modelling and Empirical Studies of Software Evolution (in
conjunction with the 19th International Conference on Software
Engineering), Boston, Massachusetts, May 18, 1997. 33-37.

[17] F. McGuire: “Simulation in healthcare”, J. Banks (Ed.): Handbook of
Simulation.Wiley, New York 1998, 605-627.

[18] I. Rus, S. Biffel, M. Halling: “Systematically Combining Process
Simulation and Empirical Data in Support of Decision Analysis in
Software Development”, SEKE 2002

[19] O. Laitenberger, J.-M. DeBaud: “An encompassing life-cycle centric
survey of software inspection”, Journal of Systems and Software 50,
1, 2000, 5-31.

[20] D. Raffo, T. Kaltio, D. Partridge, K. Phalp, J. F. Ramil: “Empirical
studies applied to software process models”, International Journal on
Empirical Software Engineering 4, 4, 1999, 351-367.

[21] I. Rus, J. Collofello, P. Lakey: “Software process simulation for
reliability management”, Journal of Systems and Software 46, 2-3,
1999, 173-182.

[22] R. J. Madachy: “System dynamics modeling of an inspection-based
process”, Proceedings of the Eighteenth International Conference on
Software Engineering, IEEE Computer Society Press, Berlin,
Germany, March 1996, 376-386.

[23] J. D. Tvedt, J. S. Collofello: “Evaluating the effectiveness of process
improvements on software development cycle time via system
dynamics modelling”, Proceedings of the Computer Software and
Applications Conference (CompSAC'95), 1995, 318- 325.

[24] D. Raffo, W. Harrison: “Combining Process Feedback with Discrete
Event Simulation Models to Support Software Project Management”,
Workshop on Feedback and Evolution in Software and Business
Processes, London, UK, July 2000.

[25] D. Pfahl, K. Lebsanft: “Integration of system dynamics modelling
with descriptive process modelling and goal-oriented measurement”,
The Journal of Systems and Software 46, 1999, 135-150.

[26] D.P. Freedman; G.M. Weinberg: “Handbook of Walkthroughs,
Inspections, and Technical Reviews. Evaluating Programs, Projects,
and Products”, New York: Dorset House Publishing, 1990.

[27] O. Laitenberger, M. Leszak, D. Stoll, K. El Emam: “Quantative
Modeling of Software Reviews in an Industrial Setting”, 6th
International Software Metrics Symposium. Metrics'99 - Proceedings
(1999), 312-322 : Ill., Lit.

[28] H. Neu, T. Hanne, J. Münch, S. Nickel, A.Wirsen: “Simulation Based
Risk Reduction for Planning Inspections”, Proceedings of 4th
International Conference on Product Focused Software Process
Improvement, PROFES 2002; Rovaniemi, Finland, December 2002,
78-93

[29] T. Hanne, S. Nickel: “A multi-objective evolutionary algorithm for
scheduling and inspection planning in software development
projects”. Report of the Fraunhofer ITWM 42, 2003.

[30] Project “Simulation-based Evaluation and Improvement of Software
Development Processes”. Web site at: www.sev-fraunhofer.de

[31] T. Devezas: “Learning Dynamics of Technological Progress”. Paper
presented at the 2nd International Conference on Sociocybernetics,
June 26 – July 2, 2000, Panticosa, Spain

[32] G. M. Weinberg: „Quality Software Management. Volume 1. Systems
Thinking“. New York: Dorset House Publishing, 1991.

