Analyzing a Software Process Model Repository for
Understanding Model Evolution

Martin Soto
Alexis Ocampo
Jirgen Miinch

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany
{soto, ocampo, muench} @iese.fraunhofer.de

Abstract: Process models play a central role in the process improvement cycle.
Often, large process models evolve in an ad-hoc manner, a fact that may easily
have critical implications such as increased maintenance effort. This highlights
the need for supporting the control and management of process model evolu-
tion, a kind of support that is currently widely missing. Analyzing existing
model repositories in order to better understand model evolution can be seen as
a first step towards identifying requirements for process model evolution sup-
port. This article presents a study that analyzes the evolution history of a large
process model with the purpose of understanding model changes and their con-
sequences. Besides the study description, the article provides an overview of re-
lated work, and suggests open questions for future work.

Keywords: process modeling, process model change, process model evolution,
model comparison, V-Modell XT, Evolyzer

1 Introduction

Process models play a central role in the process improvement cycle. On the one
hand, process analysis activities intended to identify improvement opportunities use
models as one of their main inputs. On the other hand, the process model (usually in
the form of a process guide) constitutes the main support process actors have in order
to enact the process accurately. For this reason, any proposed process improvements
will only be enacted if they are added to the model first. The consequence is that
process models must be maintained in lockstep with the process itself, in order for
controlled process improvement to happen in a sustained fashion.

Given its importance for process improvement, as well as the large size and com-
plexity of many industrial process models, it comes as a surprise that support for man-
aging model evolution is still widely missing. Standard version management tools are
generally barely adequate for the task of storing a model's version history, or observ-
ing and analyzing the changes that have happened to it. This is in stark contrast to the
situation in code evolution, where version management has been practiced for
decades, and countless research efforts have been devoted to analyzing the resulting
version histories.

© Springer 2009. This is the author's version of the work. The definite version was published in
Proceedings of the International Conference on Software Process, Lecture Notes in Computer Science
Volume 5543, 2009, pp 377-388. DOI: 10.1007/978-3-642-01680-6_34. The final version is available at link.springer.com.



It it this lack of proper evolution support for process models that motivated us to
perform the empirical study presented in this article. In the study, which is a follow-
up to previously published work by the authors [1], we analyzed a set of 604 develop-
ment versions of a large process model with the purpose of identifying change pat-
terns and understanding their effect over time. The underlying assumption is that,
given the size and complexity of the studied model, its development process will have
a behavior similar to that of a standard software development process over time. In
order to perform the study, we used our Evolyzer model comparison system to com-
pare versions along the history pairwise, and produced a database of detailed changes
that was, in turn, the subject of graphical and statistical analysis.

We see the main contributions of this work at two different levels. At the level of
the concrete study, our results provide some further evidence of the similarity be-
tween the evolution of large models and that of industrial software systems. These
similarities suggest, in turn, that in order for model-based development to succeed,
support for model evolution must be improved until it is at least as good as support
for code evolution is now. Furthermore, at a more general level, our study can be seen
as a demonstration of the practical feasibility of observing and analyzing the evolu-
tion of complex process models, as well as of the suitability of our model comparison
tools for this purpose. In this sense, we expect our work to provide a basis for more
advanced empirical work on process model evolution in the future.

The rest of the paper is organized as follows: Section 2 describes the execution of
the empirical study and analyzes its results, Section 3 briefly surveys related research
work, and Section 4 presents the main conclusions of the work and discusses a num-
ber of research questions resulting from the present work that we would like to ad-
dress in the future.

2 An Empirical Study on Model Follow-up Change

As stated above, the assumption underlying our empirical work on process model
evolution is that there exists a strong parallel between model evolution and general
software evolution. For this study, we concentrated on one particular aspect, namely,
the effect of changes on stability. Our central research question was whether changes
made to a model are likely to introduce problems that must be corrected in follow-up
changes. A positive answer to this general question would imply that, similar to the
case of code development, projects dealing with the development and maintenance of
complex models have to plan for a stabilization period when doing extensive changes.

2.1 The German V-Modell XT

We investigated this main research question in the context of a large software process
model, the German V-Modell® XT. The V-Modell XT [2] (not to be confused with
Royce’s V-Model [3]) is a high-level process description that is currently being
adopted as the software development standard for the German public administration.
It covers such aspects of software development as project management, configuration
management, software system development, and change management, among others.
In printed form, the latest English version at the time of this writing (version 1.2.1) is
765 pages long and describes about 1500 different process entities. Internally, the V-



Modell XT is structured as a hierarchy of process entities interconnected by a com-
plex graph of relationships. This structure is completely formalized, and suitable for
automated processing. The actual text of the model is attached to the formalized struc-
ture, mainly in the form of entity and relationship descriptions, although a number of
documentation items (including a tutorial introduction to the model) are also inte-
grated into the structure in the form of so-called text module entities.

Actual editing of the model is performed with a software tool set created specifi-
cally for this purpose. The printed form of the V-Modell XT (a process guide) is gen-
erated automatically by traversing the structure in a predefined order and extracting
the text from the entities found along the way. The V-Modell XT contents are main-
tained by a multidisciplinary team of experts, who work, often concurrently, on vari-
ous parts of the model. In order to provide some measure of support to this collabora-
tive work, the model is stored as a single XML file in a standard code versioning sys-
tem (CVS). As changes are made by the team members, new versions are created in
this system. Being a standard versioning system intended for code, CVS is able to
store a version history and maintain a simple change log, but can hardly provide use-
ful information about the actual changes done in each version. In particular, the out-
put of the diff program used by CVS to compare versions cannot easily tell which en-
tities were affected by a version or in which way they were changed.

The change logs show that, since its initial inception, the model has been changed
often and for a wide variety of reasons. Changes may be as simple as individual spell-
ing or grammar corrections, or as complex as the introduction of a whole set of pro-
cesses for hardware development and software/hardware integration. The richness and
complexity of this change history makes the V-Modell XT a very interesting target
for evolution analysis.

The descriptive analysis we performed in our exploratory study [1] showed that
much of the changing activity concentrated around public releases of the model and
affected some process modules much more than others. While looking at the changes
that happened to model entities, both at the aggregated process module level and at
the detailed single entity level, one phenomenon was apparent in the graphs, namely,
that “bursts” of activity could be observed that tended to calm down after a few ver-
sions. The present study concentrates on these bursts, with the aim of determining if
they constitute a significant evolution pattern for the V-Modell XT.

2.2 Hypotheses

One possible way to explain the activity bursts (and probably one that would be rather
obvious to anyone familiar with software development) is that primary changes, that
is, changes intended to introduce new features or to restructure the model, often intro-
duce defects that have to be corrected later on, by doing a number of secondary or fol-
low-up changes. So, one activity burst would actually consist of a primary change,
maybe split into a few versions, and a number of follow-up changes intended to
reestablish model correctness. Proving this conjecture is difficult, however, since it
would require an objective classification of changes into primary and secondary ones,
a task that would most probably require human judgment in many cases.

Still, we can target a weaker form of the conjecture, namely, that changing an area
of the model increases the probability of changes happening to the same area in the
near future. This would mean that activity bursts observed by visual inspection of the



graphs have statistical significance, that is, they cannot be simply explained by
chance, or by artifacts of the graphical representation used.

One difficulty that arises here is that of defining what exactly an “area” of the
model is. Actually, given the complex structure of the V-Modell XT, there would be a
number of potential, reasonable definitions, covering various levels of granularity. As
an initial step, we decided to work at a fine level of granularity, and analyze changes
at the entity level. The main rationale for this decision is that if we can observe the
phenomenon at the entity level, it holds also at least for the larger entity containers,
whereas the opposite cannot be stated.

The previous considerations led us to the following two hypotheses:

H1: Changing a process model entity in a particular version increases the probabil-
ity of changing it again in subsequent versions.

H2: Changing a process model entity at a given date increases the probability of
changing it again in the following days.

In the hypotheses, we are not making any statements about the particular way in
which the probability of further changes should increase after a change. Our current
knowledge of the evolution of this and other models is still too limited to provide a
more detailed mathematical model of how a change affects the probability of future
changes to the same area.

One conclusion that would immediately follow from the hypotheses above is that
changes to an entity in the various versions in the history are not independent events:
that is, changes to an entity affect the likelihood of future changes to the same entity.
Based on this observation, we formulate our null hypotheses as follows:

Hl1o: Changes to a process model entity in a particular version are independent
from changes to the same entity in all other versions. Moreover, there is a fixed prob-
ability p, of changes occurring to an entity in a particular version, for all versions and
for all entities present in each version.

H2,: Changes to a process model entity on a particular day are independent from
other changes to the same entity. Moreover, there is a fixed probability ps of changes
occurring to an entity on a particular day, for all days in the studied period and for all
entities present in the model during that period.

Notice that, if falsified, these null hypotheses are weaker than the negation of the
alternative hypotheses, namely, they would show that there exists a dependency be-
tween changes in different versions and at different points in time, but they would not
guarantee that the probability of follow-up changes actually increases. We will ad-
dress this point later.

2.3 Data Preparation

As for the initial study, the first step we took in order to make it possible to analyze
the V-Modell's change history statistically was to read a sizable portion of the V-
Modell XT's versioning history into our Evolyzer model comparison system. Al-
though a description of the internal operation of Evolyzer is beyond the scope of this
paper (see [4] for details), a short explanation of its workings is in order. The basis of
the system is a model database that can contain an arbitrary number of versions of a
model. Model versions in the database are represented using the RDF notation [5],
and the whole model database can be queried using a subset of the SPARQL [6]
query language for RDF.



The main purpose of Evolyzer is to allow for comparing model versions from the
database. Given two arbitrary versions, the system computes a so-called comparison
model, which contains all model elements (RDF statements, actually) present in the
compared versions, marked with labels indicating whether they are common to both
versions or are only present in one of them and, in the latter case, which of the ver-
sions they come from. Given the high level of granularity of this comparison, identi-
fying changes in it by direct inspection is generally a difficult task. For this reason,
change identification is performed by defining special change patterns (see [4] for a
detailed explanation) that match particular types of changes in the comparison model.
Evolyzer provides an efficient interpreter for the pattern language, which can identify
instances of a particular pattern in the comparison model of two arbitrary versions.

For the present study, we attempted to read 604 versions from the original version-
ing repository into our system. These versions were created in a little more than two
years' time, with three major and one minor public releases happening during that pe-
riod. Since Evolyzer uses the RDF notation for model representation (this is necessary
in order for our comparison technique to work at all), each V-Modell version was me-
chanically converted from its original XML representation into an RDF model before
reading it into the system. This conversion did not add or remove information, nor did
it change the level of formalization of the original process description. The conver-
sion process was successful for all but 4 of the 604 analyzed versions. These four ver-
sions could not be read into our repository because their corresponding XML files
contained syntax errors, and they were replaced by copies of the previous version in
order to prevent our system from reporting spurious changes.

After importing the version history, we proceeded to compare the versions pair-
wise to identify individual changes happening from one version to the next. As
changes, we considered the addition or deletion of entities, the addition or deletion of
relations between entities, and the alteration of text properties. We identified these
changes by defining corresponding change patterns and searching for them in the ver-
sion comparisons. Information about each of the identified changes, including type,
version number, and affected process entities, was encoded in RDF and stored in the
repository together with the model versions. This allowed us to easily go from the
change information to the actual model contents and back from the models to the
changes as necessary for our analysis (see [7] for the details of how this cross-refer-
encing works).

2.4 Data Analysis and Interpretation

In order to test our first hypothesis, we proceeded to look for pairs of consecutive
changes in the model history. A pair of consecutive changes is defined as a triple (e,
V1 v,), with e a model entity, and v,, v, version numbers, such that

1 v, <w,.

2. v; and v; contain changes that affect e.

3. no version v, with v; < v <v,, contains changes affecting e.

In other words, these are pairs of versions that change the same entity, with none of
the versions lying between them affecting the entity.

If our first null hypothesis H1, holds, the probability of an entity being changed by
a particular version has a fixed value p,. This, in turn, implies that the process of
changing an entity over its history can be modeled as a Bernoulli process with proba-



bility p,, where each new version containing the entity is seen as a Bernoulli trial and
the trial succeeds if the corresponding version actually changes the entity.

Let us now consider the length v, — v, of a pair of consecutive changes. If the
change process is actually a Bernoulli process, the probability P(l) of the pair having
a particular length / would be given by the geometric distribution, that is

P(1)=(1=p,)"". p,

This formula is easily understood as the probability of making / — / unsuccessful
trials followed by one final, successful trial.

In order to determine if this is actually the case in the V-Modell history, we
queried our model evolution database to find all text changes (changes to text at-
tributes) affecting entities in the model during the observed period, and, with the help
of some simple postprocessing of the query results, identified all pairs of consecutive
changes in the history as defined above. We found 2835 individual pairs during the
period studied.

Figure 1 is a histogram of the lengths of these pairs, with categories of width 10.
47.3% of the pairs have a length of 10 versions or less, 71% of 50 versions or less,
and 90.2% of 170 or less.

As explained above, if the null hypothesis holds, this observed distribution should
correspond to the geometric distribution for the probability p,. In order for a good-
ness-of-fit test to be possible, it is necessary to estimate a reasonable value for p,. We
tried two different methods for estimating this value.

The first method is based directly on the null hypothesis. If the probability of mak-
ing changes to any particular entity in any particular version is always the same, we
can look at the complete history as a single Bernoulli process in which the individual
histories of the various process entities are placed in a single row in some arbitrary or-
der. The total number of trials in that process would then correspond to the sum of the
lengths of the individual histories of the entities in the model. Since entities are intro-
duced and deleted along the history, the length history varies from one entity to the
next. Using database queries for the creation and deletion points of entities, we calcu-
lated the total number of trials to be approximately 1.150.000 and the total number of
changes to be 4248, producing a value of 0.0037 for p,. The curve for the resulting
geometric distribution is compared with the original histogram in Figure 1, where it is

1400

12001

1000

800

600

Number of pairs

400

200}

0

0 100 200 300 400 500 600
Pair length (in versions)

Fig 1: Distance in versions for consecutive entity changes.



shown as a dashed line. A chi-square goodness-of-fit test for this case yielded a p-
value smaller than 0.0001.

The second method we tried in order to determine the value of p, was to use a stan-
dard optimization procedure to find a value of p, that minimizes the chi-square value
with respect to the actual data. The p, value obtained was 0.0133, with a p-value for
the goodness-of-fit that is still below 0.0001. The curve for this probability value is
shown in Figure 1 as a solid line. Given the very low probability obtained in both
cases for the chi-square tests, we can reasonably reject our first null hypothesis, H1,,

The direct implication of rejecting the null hypothesis is that we are observing a
certain level of dependency among changes. Still, it is not clear if this dependency re-
ally implies a higher probability of subsequent changes after a change. The compari-
son in Figure 1, however, shows that the first categories are much higher than those
predicted by the estimated geometric distributions. This means that there is a high
number of short pairs (indicating changes that are very close to each other) that could
not be explained if changes were assumed to happen with a fixed probability. This
supports our alternative hypothesis H1.

For the second hypothesis, we extended the previous analysis to also consider the
time when changes were made. For each of the identified pairs of consecutive
changes, we measured the distance in days between the check-in operations corre-
sponding to the versions v; and v, in the pair, and discarded those pairs where the
changes happened on the same day. This left us with 2324 of the original 2835. Fig-
ure 2 contains a histogram of the distances obtained, with the categories correspond-
ing to 10-day intervals.

The first approach used in the previous case to estimate the value of p, cannot be
used here as easily, because the number of entities in the model can vary in the course
of a single day. For this reason, we used only the chi-square optimization method to
estimate the value of the probability p, of an entity being changed (at least once) on a
particular day. The resulting curve can be seen as a solid line in Figure 2. The actual
resulting value was 0.0133 with a goodness-of-fit p-value also below 0.0001. The
conclusion is analog to the one for the previous case: The null hypothesis H2, can also
be rejected in this case. Similarly, the pronounced peak in the first category observed

1200

1000f]

800(

600

Number of pairs

400[|

200

0

A e i —_
[¢] 100 200 300 400 500 600 700 800
Pair length (in days)

Fig 2: Distance in days for consecutive entity changes.



in the graph over the theoretical distribution contributes the remaining support to our
alternative hypothesis H2.

2.5 Threats to Validity and Limitations

Although the high significance of the previous results clearly shows that the null hy-
potheses can be rejected, at least in the stated form, the question remains of whether
the assumption of a constant change probability over all entities in the model, and for
all model versions (or days in the studied period) actually holds in practice. For the
time case, for instance, activity increases around releases, which would lead to shorter
consecutive change distances in days for the time periods around releases. This effect,
however, would be only observable when measuring change distances in days, but not
when measuring them in versions, so the fact that the effect is observed in both of
them actually speaks against this risk.

It is also quite possible that certain entity types may have higher change probabili-
ties, and this may explain at least some instances of the short change distances we are

1400

12001

10001

©
=3
S

Number of pairs

400

200}

0 == P

400 500 600

0 100 30
Pair length (in versions)
1000
800
£ 600
©
Q
W
Is}
I}
Qo
£
2 400
200
o el e - —
0 100 200 300 400 500 600 700 800

Pair length (in days)

Fig 4: Distance in versions and days for consecutive text attribute changes.



observing. In particular, certain entity types contain more text attributes, or tend to
have longer text attribute contents, thus increasing the probability of changes to them.
One option for looking into this in more detail is to identify consecutive changes to
the individual attribute instances. If change distances are still short for this case, we
can more safely assert that the effect observed at the entity level is not only explained
through differences among entity types.

Figure 3 presents the version and time histograms for pairs of consecutive changes
to individual text attributes in the model. These pairs are defined in a similar way as
for the entity case, with the exception of versions in the pair having to affect both the
same entity and the same attribute in the entity. 2749 pairs were found for the version-
based analysis, and 2225 for the time-based analysis. The best-fit geometric distribu-
tions have probabilities of 0.0182 and 0.0134 respectively. Both of them yielded p-
values for the chi-square test below 0.0001. These results are consistent with our anal-
ysis for the entity case, namely, that changes to single attributes also increase the
probability of future changes to the same attribute.

A larger, much more difficult question is related to external validity. Since model
evolution is just starting to be studied, it is premature to say that the results observed
for the V-Modell XT can be generalized to other similar models. However, one can
assume that the results would apply, at least to some extent, to models such as the Ra-
tional Unified Process (RUP) [8], which have a similar purpose and level of complex-
ity. Further studies in this direction would be very valuable.

3 Related Work

Much support and several studies have been dedicated to understanding software evo-
lution. Many examples of such work can be found in recent workshops and confer-
ences [9-11]. Most of these studies have concentrated on confirming Lehman’s [12]
and Parnas’ [13] findings, by examining successive source code releases, or examin-
ing change data stored in source code control systems. Such studies are frequently
performed with the support of advanced data mining techniques [14, 15], as is the
case for both the product and process communities. In the product community, studies
are performed for purposes such as understanding the evolution of programs and the
programs themselves [16], detecting evolutionary coupling between files [17] and
model elements (e.g., classes) [18], suggesting and predicting likely changes, prevent-
ing errors due to incomplete changes, or detecting coupling undetectable by program
analysis [19].

Jazayeri [20] stated that “Individual software products age while our understanding
of them and, as a result, their models (and meta-models) evolve”, and encouraged the
community to move the focus of studies towards the evolution of models and meta-
models. As mentioned in the introduction of this paper, we currently observe a lack of
empirical studies on the evolution of large models. In addition to the preliminary
study that gave rise to the present work [1], two of the authors performed an ex-
ploratory study [21] with the goal of understanding the nature of process model
changes in the context of the aerospace industry. That study presented the most im-
portant issues that motivated process engineers to change an aerospace software
process standard.



4 Conclusions and Outlook

The empirical study presented in this paper had the purpose of determining whether
changes to entities in the German V-Modell XT software process standard increased
the probability of subsequent changes to the same entities, both in time and in the ver-
sion sequence. The basic conjecture giving rise to this research question is that certain
changes to the model introduce defects that have to be corrected in a number of fol-
low-up changes, thus producing “bursts” of activity that are observable in the model
history.

The data used for the study corresponded to a set of 604 consecutive versions, con-
taining changes performed to the V-Modell XT from October 2004 to October 2006.
The differences from one version to the next were calculated automatically by means
of the focused identification of changes supported by our Evolyzer tool. The detailed
description of this change identification process, as well as the definition of the
change types used here, can be found in [4] and [7], respectively.

The descriptive analyses and the statistical tests presented in this article confirm
the hypothesis that changes to an entity increase the probability of further changes in
the future. Although this does not prove that our underlying model of primary and fol-
low-up changes holds, it is a first step towards providing evidence in this direction.

In this sense, also, the results of the present study support our assumption that there
are clear behavior similarities between code and model evolution (see [22] for an ex-
ample of a study that yields similar results for software systems). This assumption has
a number of consequences. On the one hand, it suggests that existing mechanisms that
facilitate code maintenance can be potentially applied to model maintenance. For in-
stance, encapsulation mechanisms help to isolate stable code parts from constantly
changing parts and, therefore, help to gain better control of maintenance activities. In
the case of models, the same encapsulation can be applied by (re-)structuring them in
such a way that the contents of stable model entities are reused without change. There
are also implications for project planning, since, as in the case of code, complex
changes seem to be very likely to “destabilize” the model by introducing defects of
various types. This would mean that project managers must plan for a stabilization pe-
riod after introducing complex changes.

We see model evolution studies as valuable input for better support of model main-
tenance in the future. Particularly in the area of version management, which is clearly
related to our work on model comparison, we believe that models can benefit to a
large extent from existing code version management techniques and tools. However,
the implementation of such techniques for models presents a number of theoretical
and technical challenges that are not present in standard code version management.
Our techniques for focused change identification, and the Evolyzer tool that realizes
them, constitute a new proposal for this kind of support. The viability of this proposal
can be seen in the fact that these techniques and tools provided us with the capabili-
ties to perform the study presented in this paper.

The similarities observed between model and code evolution are also a motivation
for performing future studies based on research questions already posed in the latter
area. For example, in a recent code evolution study [19], Zimmermann et al. at-
tempted to find hidden dependencies in a large software system by looking for pairs
of program elements that have a strong tendency to be changed simultaneously, e.g.,
when one of them is changed in a given version, there is a high probability that the
other one is also changed in the same version. In our opinion, a similar study could be



viably extended to models, with the goal of discovering hidden evolution connections
between entities that could not be found using the techniques that we have applied so
far.

5 Acknowledgments

We especially thank our colleagues Marcus Ciolkowski and Jens Heidrich from
Fraunhofer IESE, who provided many valuable ideas and enriching discussions dur-
ing the preparation of this paper. We would also like to thank Sonnhild Namingha,
also from Fraunhofer IESE, for proofreading the paper.

During our work with the V-Modell XT, we had support from several members of
the V-Modell development team. We would particularly like to mention Professor
Andreas Rausch, Christian Bartelt, Michael Deynet, and Thomas Ternité, all currently
at the Technical University of Clausthal, Germany.

This work was supported in part by SoftDiff, a project financed by the Fraunhofer
Challenge Program. This work was also partially supported by the Stiftung Rhein-
land-Pfalz fiir Innovation through the Q-VISIT project (Qualitdtsorientierte Visuelle
Software Inspektion).

6 References

1. Soto, M., Ocampo, A.; Miinch, J: The Secret Life of a Process Description: A Look into the
Evolution of a Large Process Model In: Wang, Qing (Ed.); Pfahl, Dietmar (Ed.) ; Raffo,
David Mitchell (Ed.): Making Globally Distributed Software Development a Success Story.
International Conference on Software Process, I[CSP 2008 - Proceedings. Berlin: Springer-
Verlag, 2008, 257-268.

2. V-Modell® XT. Available at http://www.v-modell.iabg.de/ (last checked 2007-12-20).

3. Royce, W. W.: Managing the development of large software systems: concepts and tech-
niques. In: Proceedings of the 9th International Conference on Software Engineering (1987),
IEEE Computer Society.

4. Soto, M., Miinch, J.: Focused Identification of Process Model Changes. In: Proceedings of
the International Conference on Software Process (ICSP 2007), Minneapolis, MN, USA,
May 19-20, 2007. Springer-Verlag (2007).

5. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation, available at
http://www.w3.org/TR/rdf-primer/ (2004) (last checked 2007-12-20).

6. Prudhommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Work-
ing Draft, available at http://www.w3.org/TR/rdf-sparql-query/ (2006) (last checked 2006-
10-22).

7. Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Process.
In: Proceedings of the 8th International Conference on Product Focused Software Develop-
ment and Process Improvement (PROFES 2007) Riga, Latvia, July 2-4, 2007. Springer-Ver-
lag (2007).

8. RUP. Rationale Unified Process. Available at http://www-
306.ibm.com/software/awdtools/rup/

(last checked 2008-08-06).

9. Di Penta, M., Lanza, M. Ninth international workshop on Principles of software evolution.
(IWPSE) 2007. ISBN:978-1-59593-722-3.

10. 8th International Workshop on Principles of Software Evolution (IWPSE 2005), 5-7 Sep-
tember 2005, Lisbon, Portugal. IEEE Computer Society 2005, ISBN 0-7695-2349-8.



11. 7th international Workshop Principles of Software Evolution (September 06 - 07, 2004).
IWPSE. IEEE Computer Society, Washington, DC, .08-viii. DOI=
http://dx.doi.org/10.1109/IWPSE.2004.15

12. Lehman, M. M., Belady, L. A. Eds.: Program Evolution: Processes of Software Change.
Academic Press Professional, Inc, 1985.

13. Parnas, D. L.: Software Aging. Proceedings of the 16th International Conference on Soft-
ware Engineering (ICSE 1994), pp. 279 — 287, Sorrento, Italy, 1994.

14. van der Aalst, W. W. T., Maruster, L.: Workflow Mining: Discovering Process Models
from Event Logs. Knowledge and Data Engineering, IEEE Transactions 2004. 16(9): p.
1128 - 1142.

15. Eiben, A. E., Smith, J. E.: Introduction to Evolutionary Computing. Natural Computing.
Springer-Verlag, Berlin, 2003.

16. Ball, T., Kim, J. M., Porter, A. A., Siy, H. P, If Your Version Control System Could Talk:
Proc. ICSE Workshop Process Modelling and Empirical Studies of Software Eng., 1997.

17. Gall, H., Hajek, K., Jazayeri, M.: Detection of Logical Coupling Based on Product Release
History: Proc. Int’l Conf. Software Maintenance (ICSM ’98), pp. 190-198, Nov. 1998.

18. Bieman, J. M., Andrews, A. A., Yang, H. J.: Understanding Change-Proneness In OO Soft-
ware through Visualization: Proc. 11th Int’l Workshop Program Comprehension, pp. 44-53,
May 2003.

19. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to guide
software changes. IEEE Transactions on Software Engineering, volume 31, issue 6, June
2005 Page(s):429 — 445. Digital Object Identifier 10.1109/TSE.2005.72

20. Jazayeri, M.: Species evolve, individuals age Invited Keynote Talk. 8th International Work-
shop on Principles of Software Evolution (IWPSE 2005), 5-7 September 2005, Lisbon, Por-
tugal. IEEE Computer Society 2005, ISBN 0-7695-2349-8

21. Ocampo, A., Miinch, J.: Process Evolution Supported by Rationale: An Empirical Investi-
gation of Process Changes. In: Wang, Qing (Ed.); Pfahl, Dietmar (Ed.) ; Raffo, David
Mitchell (Ed.) ; Wernick, Paul (Ed.): Software Process Change : International Software
Process Workshop and International Workshop on Software Process Simulation and Model-
ing, SPW/ProSim 2006 - Proceedings. Berlin: Springer-Verlag, 2006, 334-341.

22. Burd, E., Munro, M.: Evaluating the evolution of a C application. In proceedings Interna-
tional Workshop on Principles of Software Evolution. Available at: http://dontaku.c-
sce.kyushu.ac.jp/IWPSE99/Proceedings



